【题目】阿波罗尼斯(约公元前年)证明过这样一个命题:平面内到两定点距离之比为常数的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.若平面内两定点、间的距离为,动点满足,则的最小值为( )
A. B. C. D.
科目:高中数学 来源: 题型:
【题目】三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用,化简,得.设勾股形中勾股比为,若向弦图内随机抛掷颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知离心率为的椭圆,与直线交于两点,记直线的斜率为,直线的斜率为.
(1)求椭圆方程;
(2)若,则三角形的面积是否为定值?若是,求出这个定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点在轴上,中心在坐标原点,长轴长为4,短轴长为.
(1)求椭圆的标准方程;
(2)是否存在过的直线,使得直线与椭圆交于,?若存在,请求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图甲,在直角梯形中,AB∥CD,AB⊥BC,CD=2AB=2BC=4,过A点作AE⊥CD,垂足为E,现将ΔADE沿AE折叠,使得DE⊥EC.取AD的中点F,连接BF,CF,EF,如图乙。
(1)求证:BC⊥平面DEC;
(2)求二面角C-BF-E的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有分别写有1,2,3,4,5的5张卡片.
(1)从中随机抽取2张,求两张卡片上数字和为5的概率;
(2)从中随机抽取1张,放回后再随机抽取1张,求抽得的第一张卡片上的数大于第二张卡片上的数的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线上横坐标为的点到焦点的距离为.
(1)求抛物线的方程;
(2)若过点的直线与抛物线交于不同的两点,且以为直径的圆过坐标原点,求的面积。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com