【题目】已知,,其中.
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)若恒成立,求的最大值.
【答案】(Ⅰ)在上单调递减,在上单调递增;(Ⅱ).
【解析】
(Ⅰ)求函数导数,利用导数可研究函数的单调性;
(Ⅱ)由条件可得 在上恒成立, 求导得,分别讨论,和三种情况,研究的最小值的取值情况,从而即可得解.
(Ⅰ)时,,定义域是全体实数,求导得,
令,所以在上单调递减,在上单调递增
(Ⅱ)令 在上恒成立,则 在上恒成立
求导得.
若,显然可以任意小,不符合题意.
若,则最大也只能取0.
当时,令 ,
于是在上单调递减,在单调递增,在取唯一的极小值也是最小值
,
令,则,
令.
所以在上单调递增,在单调递减,
在取唯一极大值也是最大值,此时,,所以的最大值等于.
备注一:结合图象,指数函数在直线的上方,斜率显然,再讨论的情况.
备注二:考虑到 在上恒成立,令即得.取,
证明在上恒成立也给满分.
科目:高中数学 来源: 题型:
【题目】某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元。
(1)分别写出两类产品的收益与投资额的函数关系式;
(2)该家庭现有20万元资金,全部用于理财投资,怎样分配资金才能获得最大收益?其最大收益为多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】先后2次抛掷一枚骰子,将得到的点数分别记为,.
(1)求直线与圆相切的概率;
(2)将,,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个盒子里装有大小均匀的个小球,其中有红色球个,编号分别为;白色球个, 编号分别为, 从盒子中任取个小球(假设取到任何—个小球的可能性相同).
(1)求取出的个小球中,含有编号为的小球的概率;
(2)在取出的个小球中, 小球编号的最大值设为,求随机变量的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点是圆:上一动点,线段与圆:相交于点.直线经过,并且垂直于轴,在上的射影点为.
(1)求点的轨迹的方程;
(2)设圆与轴的左、右交点分别为,,点是曲线上的点(点与,不重合),直线,与直线:分别相交于点,,求证:以直径的圆经过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A. 若命题均为真命题,则命题为真命题
B. “若,则”的否命题是“若”
C. 在,“”是“”的充要条件
D. 命题“”的否定为“”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某学校准备修建一个面积为2400平方米的矩形活动场地(图中ABCD)的围栏,按照修建要求,中间用围墙EF隔开,使得ABEF为矩形,EFCD为正方形,设米,已知围墙(包括EF)的修建费用均为每米500元,设围墙(包括EF)的修建总费用为y元.
(1)求出y关于x的函数解析式及x的取值范围;
(2)当x为何值时,围墙(包括EF)的修建总费用y最小?并求出y的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com