精英家教网 > 高中数学 > 题目详情
已知椭圆,过点引1条弦,使它在这点平分,求此弦所在直线方程.
直线方程为
解法1:如图所示,设所求直线方程为
代入椭圆方程并整理:
           ①
设直线与椭圆的交点为
是①的两个根,
中点,
所求直线方程为
解法2:设直线与椭圆交点为
中点,
在椭圆上,
      两式相减:
即:

所求直线方程为,即
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在△ABC中,已知B(-2,0)、C(2,0),ADBC于点D,△ABC的垂心为H,且=.

(1)求点H(x,y)的轨迹G的方程;
(2)已知P(-1,0)、Q(1,0),M是曲线G上的一点,那么,,能成等差数列吗?若能,求出M点的坐标;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的两个焦点为,点在椭圆上,

(1)求椭圆的方程;
(2)试确定的取值范围,使得椭圆上有两个不同的点关于直线对称.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:),其离心率为,两准线之间的距离为。(1)求之值;(2)设点A坐标为(6, 0),B为椭圆C上的动点,以A为直角顶点,作等腰直角△ABP(字母A,B,P按顺时针方向排列),求P点的轨迹方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点在圆上移动,点在椭圆上移动,求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知中心在原点的椭圆经过点,则该椭圆的半长轴长的取值范围是

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的中心在原点,焦点在轴上,离心率.已知点到这个椭圆上的点的最远距离为,求这个椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

是椭圆的两个焦点,是椭圆上一点,若,证明:的面积只与椭圆的短轴长有关

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系中,椭圆1( 0)的焦距为2,以O为圆心,为半径的圆,过点作圆的两切线互相垂直,则离心率=     

查看答案和解析>>

同步练习册答案