精英家教网 > 高中数学 > 题目详情

【题目】设a,b∈R,ab≠0,给出下面四个命题:①a2+b2≥﹣2ab;② ≥2;③若a<b,则ac2<bc2;④若 .则a>b;其中真命题有(
A.1
B.2
C.3
D.4

【答案】B
【解析】解:∵a2+b2+2ab=(a+b)2≥0,故:①a2+b2≥﹣2ab为真命题;
a,b同号时, ≥2;
a,b异号时, ≤﹣2;
故② ≥2为假命题;
若a<b,c2=0,则ac2=bc2
故③若a<b,则ac2<bc2为假命题;
.则c2>0,则a>b;故④若 .则a>b为真命题;
故选:B
【考点精析】关于本题考查的命题的真假判断与应用,需要了解两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在梯形中, ,四边形为矩形,且平面 .

(1)求证: 平面

(2)点在线段(含端点)上运动,当点在什么位置时,平面与平面所成锐二面角最大,并求此时二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M={x|x2﹣4x+3<0},N={x||x﹣3|≤1}.
(1)求出集合M,N;
(2)试定义一种新集合运算△,使M△N={x|1<x<2};
(3)若有P={x|| |≥ },按(2)的运算,求出(N△M)△P.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为实数)的图像在点处的切线方程为.

(1)求实数的值及函数的单调区间;

(2)设函数,证明时, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:如果函数f(x)在[a,b]上存在x1 , x2(a<x1<x2<b)满足 , ,则称函数f(x)是[a,b]上的“双中值函数”.已知函数f(x)=x3﹣x2+a是[0,a]上的“双中值函数”,则实数a的取值范围是(  )
A.(,
B.(,3)
C.( , 1)
D.( , 1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】集合A={x|x2﹣3x﹣4<0,x∈Z}用列举法表示为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥S﹣ABC中,AB⊥BC,AB=BC= , SA=SC=2,二面角S﹣AC﹣B的余弦值是 , 若S、A、B、C都在同一球面上,则该球的表面积是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知指数函数y=ax在[0,1]上的最大值与最小值的差为 ,则实数a的值为( )
A.
B.
C.

D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知c>0,设命题p:函数y=cx为减函数;命题q:当x∈[ , 2]时,函数f(x)=x+ 恒成立,如果p∨q为真命题,p∧q为假命题,求c的取值范围.

查看答案和解析>>

同步练习册答案