精英家教网 > 高中数学 > 题目详情
已知点P为椭圆
x2
25
+
y2
9
=1
和双曲线
x2
9
-
y2
7
=1
的一个交点,点F1、F2分别是椭圆的左、右焦点,则∠F1PF2的余弦值是(  )
分析:由椭圆和双曲线的定义,得到|PF1|+|PF2|=10且||PF1|-|PF2||=6,联解得到|PF1|2+|PF2|2=68且2|PF1|•|PF2|=32,再算出椭圆的焦距,利用余弦定理加以计算即可算出∠F1PF2的余弦值.
解答:解:根据椭圆的定义,可得|PF1|+|PF2|=2a=10…①
由双曲线的定义,可得||PF1|-|PF2||=2a'=6…②
①②联解,得|PF1|2+|PF2|2=68且2|PF1|•|PF2|=32
又∵点F1、F2分别是椭圆的左、右焦点,
∴|F1F2|=2
25-9
=8,可得|F1F2|2=64
△F1PF2中,cos∠F1PF2=
|PF1|2+|PF2|2-|F 1F2|2
2|PF1|•|PF2|
=
1
8

故选:C
点评:本题在双曲线与椭圆中,求△F1PF2中cos∠F1PF2的值.着重考查了椭圆、双曲线的定义与标准方程和余弦定理解三角形等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆方程为C:
x2
2
+y2
=1,它的左、右焦点分别为F1、F2.点P(x0,y0)为第一象限内的点.直线PF1和PF2与椭圆的交点分别为A、B和C、D,O为坐标原点.
(1)求椭圆上的点与两焦点连线的最大夹角;
(2)设直线PF1、PF2的斜率分别为k1、k2.试找出使得直线OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD满足kOA+kOB+kOC+kOD=0成立的条件(用k1、k2表示).
(3)又已知点E为抛物线y2=2px(p>0)上一点,直线F2E与椭圆C的交点G在y轴的左侧,且满足
EG
=2
F2E
,求p的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•湖北模拟)已知点P(x0,y0)是椭圆E:
x2
2
+y2=1
上任意一点x0y0≠1,直线l的方程为
x0x
2
+y0y=1

(I)判断直线l与椭圆E交点的个数;
(II)直线l0过P点与直线l垂直,点M(-1,0)关于直线l0的对称点为N,直线PN恒过一定点G,求点G的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•嘉定区三模)如图,已知椭圆
x2
2
+y2=1
的左右焦点分别为F1、F2,椭圆的下顶点为A,点P是椭圆上任意一点,,圆M是以PF2为直径的圆.
(1)若圆M过原点O,求圆M的方程;
(2)当圆M的面积为
π
8
时,求PA所在直线的方程;
(3)写出一个定圆的方程,使得无论点P在椭圆的什么位置,该定圆总与圆M相切.请写出你的探究过程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•卢湾区二模)如图,已知点H(-3,0),动点P在y轴上,点Q在x轴上,其横坐标不小于零,点M在直线PQ上,且满足
HP
PM
=0
PM
=-
3
2
MQ

(1)当点P在y轴上移动时,求点M的轨迹C;
(2)过定点F(1,0)作互相垂直的直线l与l',l与(1)中的轨迹C交于A、B两点,l'与(1)中的轨迹C交于D、E两点,求四边形ADBE面积S的最小值;
(3)将(1)中的曲线C推广为椭圆:
x2
2
+y2=1
,并将(2)中的定点取为焦点F(1,0),求与(2)相类似的问题的解.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆方程为C:
x2
2
+y2
=1,它的左、右焦点分别为F1、F2.点P(x0,y0)为第一象限内的点.直线PF1和PF2与椭圆的交点分别为A、B和C、D,O为坐标原点.
(1)求椭圆上的点与两焦点连线的最大夹角;
(2)设直线PF1、PF2的斜率分别为k1、k2.试找出使得直线OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD满足kOA+kOB+kOC+kOD=0成立的条件(用k1、k2表示).
(3)又已知点E为抛物线y2=2px(p>0)上一点,直线F2E与椭圆C的交点G在y轴的左侧,且满足
EG
=2
F2E
,求p的最大值.

查看答案和解析>>

同步练习册答案