【题目】给出下列四种说法:
(1)函数与函数的定义域相同;
(2)函数与的值域相同;
(3)若函数式定义在R上的偶函数且在为减函数对于锐角则;
(4)若函数且,则;
其中正确说法的序号是________.
科目:高中数学 来源: 题型:
【题目】已知椭圆:()经过点,且两个焦点,的坐标依次为和.
(1)求椭圆的标准方程;
(2)设,是椭圆上的两个动点,为坐标原点,直线的斜率为,直线的斜率为,若,证明:直线与以原点为圆心的定圆相切,并写出此定圆的标准方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某网店经营的一种商品进行进价是每件10元,根据一周的销售数据得出周销售量(件)与单价(元)之间的关系如下图所示,该网店与这种商品有关的周开支均为25元.
(1)根据周销售量图写出(件)与单价(元)之间的函数关系式;
(2)写出利润(元)与单价(元)之间的函数关系式;当该商品的销售价格为多少元时,周利润最大?并求出最大周利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对一批产品的内径进行抽查,已知被抽查的产品的数量为200,所得内径大小统计如表所示:
(Ⅰ)以频率估计概率,若从所有的这批产品中随机抽取3个,记内径在的产品个数为X,X的分布列及数学期望;
(Ⅱ)已知被抽查的产品是由甲、乙两类机器生产,根据如下表所示的相关统计数据,是否有的把握认为生产产品的机器种类与产品的内径大小具有相关性.
参考公式:,(其中为样本容量).
0.050 | 0.010 | 0.001 | |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点为圆的圆心, 是圆上的动点,点在圆的半径上,且有点和上的点,满足, .
(1)当点在圆上运动时,求点的轨迹方程;
(2)若斜率为的直线与圆相切,直线与(1)中所求点的轨迹交于不同的两点, , 是坐标原点,且时,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com