【题目】已知函数f(x)=sin 2x-cos2x-,x∈R.
(1)求函数f(x)的最小值和最小正周期;
(2)设△ABC的内角A、B、C的对边分别为a、b、c,且c=,f(C)=0,若sin B=2sin A,求a,b的值.
科目:高中数学 来源: 题型:
【题目】如下图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.
(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;
(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数()在同一半周期内的图象过点, , ,其中为坐标原点, 为函数图象的最高点, 为函数的图象与轴的正半轴的交点, 为等腰直角三角形.
(1)求的值;
(2)将绕原点按逆时针方向旋转角,得到,若点恰好落在曲线()上(如图所示),试判断点是否也落在曲线()上,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某地区某种农产品的年产量x(单位:吨)对价格y(单位:千元/吨)和利润z的影响,对近五年该农产品的年产量和价格统计如下表:
x | 1 | 2 | 3 | 4 | 5 |
y | 7.0 | 6.5 | 5.5 | 3.8 | 2.2 |
(1)求y关于x的线性回归方程;
(2)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少时,年利润z取到最大值?(保留两位小数)
参考公式: ,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C1的参数方程为 (φ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C2的极坐标方程为.
(1)将圆C1的参数方程化为普通方程,将圆C2的极坐标方程化为直角坐标方程;
(2)圆C1、C2是否相交,若相交,请求出公共弦的长;若不相交,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)=Asin(x+φ)(A>0, 的部分图象如图所示.
(I)设x∈(0, )且f(α)= ,求sin 2a的值;
(II)若x∈[]且g(x)=2λf(x)+cos(4x﹣)的最大值为,求实数λ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-5 不等式选讲
已知函数f(x)=|x-1|-2|x+1|的最大值为m.
(1)求m;
(2)若a,b,c∈(0,+∞),a2+2b2+c2=2m,求ab+bc的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是边长为的菱形, , 平面, , 是棱上的一个点, , 为的中点.
(1)证明: 平面;
(2)求直线与平面所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com