精英家教网 > 高中数学 > 题目详情

【题目】定义在R上的偶函数f(x),对任意x1 , x2∈[0,+∞)(x1≠x2),有 <0,则(
A.f(3)<f(﹣2)<f(1)
B.f(1)<f(﹣2)<f(3)
C.f(﹣2)<f(1)<f(3)
D.f(3)<f(1)<f(﹣2)

【答案】A
【解析】解:由题意,∵对任意x1 , x2∈[0,+∞)(x1≠x2),有 <0,
∴函数在[0,+∞)上单调减
∴f(3)<f(2)<f(1)
∵函数是偶函数,∴f(﹣2)=f(2)
∴f(3)<f(﹣2)<f(1)
故选A.
【考点精析】掌握奇偶性与单调性的综合是解答本题的根本,需要知道奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知指数函数f(x)=ax(a>0,a≠1).
(1)若f(x)的图象过点(1,2),求其解析式;
(2)若 ,且不等式g(x2+x)>g(3﹣x)成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】莫数学建模兴趣小组测量某移动信号塔的高度(单位: ),如图所示,垂直放置的标杆的高度,仰角 .

(Ⅰ)该小组已经测得一组的值, ,请推测的值;

(Ⅱ)该小组对测得的多组数据分析后,发现适当调节标杆到信号塔的距离(单位: ),使得较大时,可以提高信号塔测量的精确度,若信号塔高度为,试问为多大时, 最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某产品的三个质量指标分别为xyz,用综合指标Sxyz评价该产品的等级.若S≤4, 则该产品为一等品.先从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:

产品编号

A1

A2

A3

A4

A5

质量指标

(x, y, z)

(1,1,2)

(2,1,1)

(2,2,2)

(1,1,1)

(1,2,1)

产品编号

A6

A7

A8

A9

A10

质量指标

(x, y, z)

(1,2,2)

(2,1,1)

(2,2,1)

(1,1,1)

(2,1,2)

(1)利用上表提供的样本数据估计该批产品的一等品率;

(2)在该样本的一等品中, 随机抽取2件产品,

() 用产品编号列出所有可能的结果;

() 设事件B为“在取出的2件产品中, 每件产品的综合指标S都等于4求事件B发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x2+bx+c,若f(﹣3)=f(1),f(0)=﹣3.
(1)求函数f(x)的解析式;
(2)若函数g(x)= 画出函数g(x)图象;
(3)求函数g(x)在[﹣3,1]的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=ax3+bx+ +2,满足f(﹣3)=﹣2015,则f(3)的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+2ax+2,
(1)求实数a的取值范围,使函数y=f(x)在区间[﹣5,5]上是单调函数;
(2)若x∈[﹣5,5],记y=f(x)的最大值为g(a),求g(a)的表达式并判断其奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线)与椭圆相交于两个不同的点,与轴相交于点,记为坐标原点.

(1)证明:

(2)若,求的面积取得最大值时的椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,点在椭圆上.

1求椭圆的方程;

2过点的直线,交椭圆两点,点在椭圆上,坐标原点恰为的重心,求直线的方程.

查看答案和解析>>

同步练习册答案