【题目】已知数列是各项均为正数的等差数列,其中,且成等比数列;数列的前项和为,满足.
(1)求数列、的通项公式;
(2)如果,设数列的前项和为,是否存在正整数,使得成立,若存在,求出的最小值,若不存在,说明理由.
【答案】(1), ;(2)存在; 。
【解析】试题(1)数列是等差数列, 用公差表示出来后,由已知求得,可得通项公式,数列是已知和与项的关系,可由求得,再写出当时,两式相减后可得的递推式,从而知是等比数列,由此可得通项公式;(2)数列是由等差数列与等比数列相乘所得,其前项和用错位相减法求得,由(2)得出,作差 ,会发现当时都有 ,因此结论是肯定的.
试题解析:(1)设数列的公差为,依条件有,即,
解得(舍)或, ,由得,
当时, ,解得,当时, ,
, 数列是首项为,公比为的等比数列,故;
(2)由(1)知: , ①,
②,
① —②得
又, ,当时, ,
当时, , ,故所求的正整数存在,其最小值为2.
科目:高中数学 来源: 题型:
【题目】下列有关线性回归分析的四个命题:
①线性回归直线必过样本数据的中心点();
②回归直线就是散点图中经过样本数据点最多的那条直线;
③当相关性系数时,两个变量正相关;
④如果两个变量的相关性越强,则相关性系数就越接近于.
其中真命题的个数为( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图F1、F2是椭圆C1: +y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥中, , , ,若该三棱锥的四个顶点均在同一球面上,则该球的体积为( )
A. B. C. D.
【答案】D
【解析】在三棱锥中,因为, , ,所以,则该几何体的外接球即为以为棱长的长方体的外接球,则 ,其体积为 ;故选D.
点睛:在处理几何体的外接球问题,往往将所给几何体与正方体或长方体进行联系,常用补体法补成正方体或长方体进行处理,本题中由数量关系可证得 从而几何体的外接球即为以为棱长的长方体的外接球,也是处理本题的技巧所在.
【题型】单选题
【结束】
21
【题目】已知函数,则的大致图象为( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,取出蓝球得3分.
(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和.求ξ分布列;
(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若 ,求a:b:c.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知幂函数满足.
(1)求函数的解析式;
(2)若函数,是否存在实数使得的最小值为0?若存在,求出的值;若不存在,说明理由;
(3)若函数,是否存在实数,使函数在上的值域为?若存在,求出实数的取值范围;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com