精英家教网 > 高中数学 > 题目详情
如图,椭圆上的点到焦点的距离为2,的中点,则为坐标原点)的值为
A.8B.2C.4D.
C
根据椭圆的几何性质可得。因为分别为中点,所以,故选C
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知椭圆的标准方程为,若椭圆的焦距为,则的取值集合为            

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点是椭圆与双曲线的一个交点,是椭圆的左右焦点,则      

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点P是直角坐标平面内的动点,点P到直线的距离为d1,到点F(– 1,0)的距离为d2,且
(1)   求动点P所在曲线C的方程;
(2)   直线过点F且与曲线C交于不同两点AB(点AB不在x轴上),分别过AB点作直线的垂线,对应的垂足分别为,试判断点F与以线段为直径的圆的位置关系(指在圆内、圆上、圆外等情况);
(3)   记(AB是(2)中的点),问是否存在实数,使成立.若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题满分14分)已知椭圆上的点到两个焦点的距离之和为
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线与椭圆交于两点,且为坐标原点),求的最大值和最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是椭圆的两个焦点, 若存在点P为椭圆上一点, 使得 , 则椭圆离心率的取值范围是
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设F1,F2为椭圆的两个焦点,若椭圆上存在点P满足,则椭圆的离心率的取值范围是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是两个正数的等比中项,则圆锥曲线的离心率为 (     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为,且G上一点到G的两个焦点的距离之和为12,则椭圆G的方程为       __

查看答案和解析>>

同步练习册答案