精英家教网 > 高中数学 > 题目详情

双曲线=1的焦点到渐近线的距离为(   )。

A.2 B.2 C. D.1

A

解析试题分析:先由题中条件求出焦点坐标和渐近线方程,再代入点到直线的距离公式即可求出结论.因为双曲线=1中可知,a=2,,而其渐近线方程为则由点到直线的距离公式可知,焦点(4,0)到渐近线的距离为b= 2,故选A.
考点:双曲线的性质
点评:解决的关键是利用已知的方程得到焦点坐标,和渐近线方程,结合点到直线的距离得到结论,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:单选题

设P是双曲线=1(a>0 ,b>0)上的点,F1、F2是焦点,双曲线的离心 率是,且∠F1PF2=90°,△F1PF2面积是9,则a + b=(   )

A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

若抛物线C1:(p >0)的焦点F恰好是双曲线C2:(a>0,b >0)的右焦点,且它们的交点的连线过点F,则双曲线的离心率为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知点分别是双曲线的左、右焦点,过且垂直于轴的直线与双曲线交于两点,若为锐角三角形,则该双曲线的离心率的取值范围是

A. B. C.(1,2) D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

过双曲线的左焦点作圆的切线,切点为,延长交双曲线右支于点,若,则双曲线的离心率为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

椭圆的离心率为(   )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知点分别是椭圆的左、右焦点,过且垂直于轴的直线与椭圆交于AB两点,若为正三角形,则该椭圆的离心率是(     )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知椭圆,过椭圆右焦点F的直线L交椭圆于A、B两点,交y轴于P点。设,则等于(   )
A.         B.         C.          D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知椭圆与双曲线有相同的焦点,若的等比中项,的等差中项,则椭圆的离心率是(   )

A. B. C. D. 

查看答案和解析>>

同步练习册答案