精英家教网 > 高中数学 > 题目详情
(1)求函数y=
x2-2x+1
x-2
  (x<2)的最大值
(2)函数y=loga(x+3)(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中mn>0,求
1
m
+
2
n
的最小值.
分析:(1)将函数y=
x2-2x+1
x-2
进行化简变形成y=-[(2-x)+
1
2-x
]+2,然后利用基本不等式即可求出所求,注意等号成立的条件;
(2)先根据对数函数的性质求出定点A的坐标,根据点A在直线mx+ny+1=0上,可得m,n的等量关系,利用“1”的代换,以及基本不等式可求出所求.
解答:解:(1)∵x<2,
∴2-x>0,
∴y=
x2-2x+1
x-2
=
(x-2)2+2(x-2)+1
x-2
=-[(2-x)+
1
2-x
]+2≤-2
(2-x)×
1
2-x
+2=0,
当且仅当2-x=
1
2-x
,即x=1时取等号,
∴函数y=
x2-2x+1
x-2
  (x<2)的最大值为0;
(2)∵函数y=loga(x+3)(a>0,a≠1)的图象恒过定点A,
∴A(-2,-1),
又∵点A在直线mx+ny+1=0上,
∴-2m-n+1=0,即2m+n=1,
又∵mn>0,
1
m
+
2
n
=
2m+n
m
+
4m+2n
n
=2+
n
m
+
4m
n
+2
≥4+2•
n
m
4m
n
=8

当且仅当m=
1
4
,n=
1
2
时取等号,
1
m
+
2
n
的最小值为8.
点评:本题考查了基本不等式在最值问题中的应用.在应用基本不等式求最值时要注意“一正、二定、三相等”的判断.运用基本不等式解题的关键是寻找和为定值或者是积为定值,难点在于如何合理正确的构造出定值.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

例1.求函数y=
x2-1(0≤x≤1)
x2(-1≤x<0)
的反函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于区间[a,b](a<b),若函数y=f(x)同时满足:①f(x)在[a,b]上是单调函数;②函数y=f(x),x∈[a,b]的值域是[a,b],则称区间[a,b]为函数f(x)的“保值”区间.
(1)求函数y=x2的所有“保值”区间;
(2)函数y=x2+m(m≠0)是否存在“保值”区间?若存在,求出m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对于区间[a,b](a<b),若函数y=f(x)同时满足:①f(x)在[a,b]上是单调函数;②函数y=f(x),x∈[a,b]的值域是[a,b],则称区间[a,b]为函数f(x)的“保值”区间.
(1)求函数y=x2的所有“保值”区间;
(2)函数y=x2+m(m≠0)是否存在“保值”区间?若存在,求出m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年北京市西城区高一(上)期末数学试卷(解析版) 题型:解答题

对于区间[a,b](a<b),若函数y=f(x)同时满足:①f(x)在[a,b]上是单调函数;②函数y=f(x),x∈[a,b]的值域是[a,b],则称区间[a,b]为函数f(x)的“保值”区间.
(1)求函数y=x2的所有“保值”区间;
(2)函数y=x2+m(m≠0)是否存在“保值”区间?若存在,求出m的取值范围;若不存在,说明理由.

查看答案和解析>>

同步练习册答案