精英家教网 > 高中数学 > 题目详情

【题目】给定两个长度为1的平面向量 ,它们的夹角为120°.如图所示,点C在以O为圆心的圆弧 上变动.若 ,其中x,y∈R,试求x+y的最大值.

【答案】解:由题意,以O为原点,OA为x轴的正向,建立如图所示的坐标系, 设C(cosθ,sinθ),0≤θ≤
可得A(1,0),B(﹣
得,x﹣ y=cosθ, y=sinθ,
y= sinθ,∴x+y=cosθ+ sinθ=2sin(θ+ ),
∴x+y的最大值是2.

【解析】建立坐标系,得出点的坐标,进而可得向量的坐标,化已知问题为三角函数的最值求解,可得答案.
【考点精析】本题主要考查了平面向量的基本定理及其意义的相关知识点,需要掌握如果是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数,使才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题p:x∈A,且A={x|a﹣1<x<a+1},命题q:x∈B,且B={x|x2﹣4x+3≥0} (Ⅰ)若A∩B=,A∪B=R,求实数a的值;
(Ⅱ)若p是q的充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过随机询问110名性别不同的中学生是否爱好运动,得到如下的列联表:

总计

爱好

40

20

60

不爱好

20

30

50

总计

60

50

110

由K2= 得,K2= ≈7.8

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

参照附表,得到的正确结论是(
A.在犯错误的概率不超过0.1%的前提下,认为“爱好运动与性别有关”
B.有99%以上的把握认为“爱好运动与性别有关”
C.在犯错误的概率不超过0.1%的前提下,认为“爱好运动与性别无关”
D.有99%以上的把握认为“爱好运动与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.

(1)证明PA∥平面EDB;
(2)证明PB⊥平面EFD;
(3)求二面角C﹣PB﹣D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点是椭圆的一个顶点, 的长轴是圆的直径. 是过点且互相垂直的两条直线,其中交圆于两点交椭圆于另一点.

(1)求椭圆的方程;

2)求面积取最大值时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|f(x)=lg(x﹣1)+ },集合B={y|y=2x+a,x≤0}.
(1)若a= ,求A∪B;
(2)若A∩B=,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知
(1)求tan2α的值;
(2)求cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的短轴端点到右焦点的距离为2.

求椭圆的方程;

过点的直线交椭圆两点,交直线于点,若 ,求证: 为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是(用数字作答).

查看答案和解析>>

同步练习册答案