精英家教网 > 高中数学 > 题目详情

已知菱形ABCD的顶点A,C在椭圆x2+3y2=4上,对角线BD所在直线的斜率为l.

(Ⅰ)当直线BD过点(0,1)时,求直线AC的方程;

(Ⅱ)当∠ABC=60°,求菱形ABCD面积的最大值.

 

【答案】

解: (Ⅰ)由题意得直线BD的方程为y=x+1.

            因为四边形ABCD为菱形,所以ACBD.

于是可设直线AC的方程为y=-x+n.

因为AC在椭圆上,

所以△=-12n2+64>0,解得

AC两点坐标分别为(x1,y1),(x2,y2),

所以

所以AC的中点坐标为

由四边形ABCD为菱形可知,点在直线y=x+1上,

所以,解得n=-2.

所以直线AC的方程为,即x+y+2=0.

(Ⅱ)因为四边形ABCD为菱形,且,

      所以

所以菱形ABCD的面积

由(Ⅰ)可得

所以

所以当n=0时,菱形ABCD的面积取得最大值.

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1、F2,其中F2也是抛物线C2:y2=4x的焦点,M是C1与C2在第一象限的交点,且|MF2|=
5
3

(1)求椭圆C1的方程;
(2)已知菱形ABCD的顶点A,C在椭圆C1上,对角线BD所在的直线的斜率为1.
①当直线BD过点(0,
1
7
)时,求直线AC的方程;
②当∠ABC=60°时,求菱形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1、F2,其中F2也是抛物线C2:y2=4x的焦点,M是C1与C2在第一象限的交点,且|MF2|=
5
3

(I)求椭圆C1的方程;   
(Ⅱ)已知菱形ABCD的顶点A、C在椭圆C1上,顶点B、D在直线7x-7y+1=0上,求直线AC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知菱形ABCD的顶点A,C在椭圆x2+3y2=4上,对角线BD所在直线的斜率为1.
(Ⅰ)当直线BD过点(0,1)时,求直线AC的方程;
(Ⅱ)当∠ABC=60°时,求菱形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源:2008年北京市高考数学试卷(理科)(解析版) 题型:解答题

已知菱形ABCD的顶点A,C在椭圆x2+3y2=4上,对角线BD所在直线的斜率为1.
(Ⅰ)当直线BD过点(0,1)时,求直线AC的方程;
(Ⅱ)当∠ABC=60°时,求菱形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源:2014届黑龙江省高二上学期期末理科数学试卷(解析版) 题型:解答题

(本题12分)已知椭圆的左、右焦点分别为F1、F2,其中F2也是抛物线的焦点,M是C1与C2在第一象限的交点,且  

(I)求椭圆C1的方程;  (II)已知菱形ABCD的顶点A、C在椭圆C1上,顶点B、D在直线上,求直线AC的方程。

 

查看答案和解析>>

同步练习册答案