已知a,b是实数,函数f(x)=x3+ax,g(x)=x2+bx,f'(x)和g'(x)是f(x),g(x)的导函数,若f'(x)g'(x)≥0在区间I上恒成立,则称f(x)和g(x)在区间I上单调性一致
(1)设a>0,若函数f(x)和g(x)在区间[-1,+∞)上单调性一致,求实数b的取值范围;
(2)设a<0,且a≠b,若函数f(x)和g(x)在以a,b为端点的开区间上单调性一致,求|a-b|的最大值.
【答案】
分析:(1)先求出函数f(x)和g(x)的导函数,再利用函数f(x)和g(x)在区间[-1,+∞)上单调性一致即f'(x)g'(x)≥0在[-1,+∞)上恒成立,以及3x
2+a>0,来求实数b的取值范围;
(2)先求出f'(x)=0的根以及g'(x)=0的根,再分别求出两个函数的单调区间,综合在一起看何时函数f(x)和g(x)在以a,b为端点的开区间上单调性一致,进而求得|a-b|的最大值.
解答:解:f'(x)=3x
2+a,g'(x)=2x+b.
(1)由题得f'(x)g'(x)≥0在[-1,+∞)上恒成立.因为a>0,故3x
2+a>0,
进而2x+b≥0,即b≥-2x在[-1,+∞)上恒成立,所以b≥2.
故实数b的取值范围是[2,+∞)
(2)令f'(x)=0,得x=
.
若b>0,由a<0得0∈(a,b).又因为f'(0)g'(0)=ab<0,
所以函数f(x)和g(x)在(a,b)上不是单调性一致的.
因此b≤0.
现设b≤0,当x∈(-∞,0)时,g'(x)<0;
当x∈(-∝,-
)时,f'(x)>0.
因此,当x∈(-∝,-
)时,f'(x)g'(x)<0.故由题设得a≥-
且b≥-
,
从而-
≤a<0,于是-
<b<0,因此|a-b|≤
,且当a=-
,b=0时等号成立,
又当a=-
,b=0时,f'(x)g'(x)=6x(x
2-
),从而当x∈(-
,0)时f'(x)g'(x)>0.
故函数f(x)和g(x)在(-
,0)上单调性一致,因此|a-b|的最大值为
.
点评:本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.