精英家教网 > 高中数学 > 题目详情
2.将3个球任意放入4个大玻璃杯中,杯中球最多的个数为ξ,求ξ分布列.

分析 应首先明确杯子中球的最多个数X的可能值,再求相应的概率,由此能求出ξ的分布列.

解答 解:由题意可知,杯子中球的最多个数X的所有可能值为1,2,3.
当X=1时,对应于4个杯子中恰有三个杯子各放一球情形,P(X=1)=$\frac{{A}_{4}^{3}}{{4}^{3}}$=$\frac{3}{8}$;
当X=2时,对应于4个杯子中恰有一个杯子放两球的情形,P(X=2)=$\frac{{C}_{3}^{2}{C}_{4}^{1}{C}_{3}^{1}}{{4}^{3}}=\frac{9}{16}$;
当X=3时,对应于4个杯子中恰有一个杯子放三个球的情形,P(X=3)=$\frac{{C}_{4}^{1}}{{4}^{3}}=\frac{1}{16}$,故X的分布列为

X123
P$\frac{3}{8}$$\frac{9}{16}$$\frac{1}{16}$

点评 本题考查离散型随机变量的分布列的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.求下列数列的最大或最小项对应的n的值:
(1)an=$\frac{\sqrt{99}+n}{\sqrt{101}-n}$;
(2)an=$\frac{{n}^{2}+4n+69}{n+2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.证明:“双勾函数”f(x)=ax+$\frac{b}{x}$(a>0,b>0):在 (-∞,-$\sqrt{\frac{b}{a}}$],[$\sqrt{\frac{b}{a}}$,+∞)上单调递增,在[-$\sqrt{\frac{b}{a}}$,0),(0,$\sqrt{\frac{b}{a}}$]上单调递减.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知M={x,xy,$\sqrt{x-y}$},N={0,|x|,y},若M⊆N,且N⊆M,则($\frac{1}{x}$+$\frac{1}{y}$)+($\frac{1}{{x}^{2}}$+$\frac{1}{{y}^{2}}$)+…+($\frac{1}{{x}^{2010}}$+$\frac{1}{{y}^{2010}}$)+($\frac{1}{{x}^{2011}}$+$\frac{1}{{y}^{2011}}$)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若2f(x)-f(-x)=x+1,求f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知an=$\frac{{2}^{n}}{({2}^{n}-1)({2}^{n+1}-1)}$,求其前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.若函数y=f(x)的定义域为R,对于定义域内的任意x,存在实数a使得f(x+a)=f(-x)成立,则称此函数具有“P(a)性质”.
(1)判断函数y=sinx是否具有“P(a)性质”,若具有“P(a)性质”,求出所有a的值;若不具有“P(a)性质”,说明理由;
(2)已知y=f(x)具有“P(0)性质”,且当x≤0时f(x)=(x+m)2,求y=f(x)在[0,1]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.一般地,将扑克牌中的J,Q,K叫花牌,某人从一副已洗(去掉大、小王,共52张)中依次摸取5张,所摸扑克牌中恰好有3张花牌的概率是多少?若X表示摸取的花牌数,求X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知$\overrightarrow{a}$=(3,-2,-3),$\overrightarrow{b}$=(-1,x-1,1),且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为钝角,则x的取值范围是x>-2且x≠-$\frac{5}{3}$.

查看答案和解析>>

同步练习册答案