精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ax﹣x2﹣lnx存在极值,若这些极值的和大于5+ln2,则实数a的取值范围为(
A.(﹣∞,4)
B.(4,+∞)
C.(﹣∞,2)
D.(2,+∞)

【答案】B
【解析】解:f(x)=ax﹣x2﹣lnx,x∈(0,+∞), 则f′(x)=a﹣2x﹣ =﹣
∵函数f(x)存在极值,∴f′(x)=0在(0,+∞)上有根,
即2x2﹣ax+1=0在(0,+∞)上有根,∴△=a2﹣8≥0,
显然当△=0时,F(x)无极值,不合题意;
∴方程必有两个不等正根,记方程2x2﹣ax+1=0的两根为x1 , x2 , x1+x2= ,x1x2=
f(x1),f(x2)是函数F(x)的两个极值,
由题意得,f(x1)+f(x2)=a(x1+x2)﹣(x12+x22)﹣(lnx1+lnx2
= +1﹣ln >5﹣ln
化简解得,a2>16,满足△>0,
又x1+x2= >0,即a>0,
∴∴a的取值范围是(4,+∞),
故选:B.
【考点精析】本题主要考查了函数的极值与导数的相关知识点,需要掌握求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在半径为R的圆内,作内接等腰△ABC,当底边上高h∈(0,t]时,△ABC的面积取得最大值 ,则t的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,过对角线的一个平面交于点,交.

①四边形一定是平行四边形;

②四边形有可能是正方形;

③四边形在底面内的投影一定是正方形;

④四边形有可能垂直于平面

以上结论正确的为_______________.(写出所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2x﹣a|+|x﹣1|,a∈R.
(Ⅰ)若不等式f(x)≥2﹣|x﹣1|恒成立,求实数a的取值范围;
(Ⅱ)当a=1时,直线y=m与函数f(x)的图象围成三角形,求m的最大值及此时围成的三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】运行如下程序框图,如果输入的t∈[0,5],则输出S属于(
A.[﹣4,10)
B.[﹣5,2]
C.[﹣4,3]
D.[﹣2,5]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥 中,底面 为菱形,且直线 又棱 的中点,
(Ⅰ) 求证:直线
(Ⅱ) 求直线 与平面 的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 ,右顶点为 ,离心率为 ,直线 与椭圆 相交于不同的两点 ,过 的中点 作垂直于 的直线 ,设 与椭圆 相交于不同的两点 ,且 的中点为
(Ⅰ)求椭圆 的方程;
(Ⅱ)设原点 到直线 的距离为 ,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥的底面为直角梯形, .点的中点.

)求证: 平面

)已知平面底面,且.在棱上是否存在点,使?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是东西方向的公路北侧的边缘线,某公司准备在上的一点的正北方向的处建一仓库,并在公路同侧建造一个正方形无顶中转站(其中边上),现从仓库和中转站分别修两条道路,已知,且,设

(1)求关于的函数解析式

(2)如果中转站四周围墙(即正方形周长)造价为万元,两条道路造价为万元,问:取何值时,该公司建中转围墙和两条道路总造价最低?

查看答案和解析>>

同步练习册答案