【题目】△ABC中,A(0,1),AB边上的高线方程为x+2y-4=0,AC边上的中线方程为2x+y-3=0,求AB,BC,AC边所在的直线方程
【答案】,,
【解析】
试题分析:先找出AB边上的高线方程的斜率,根据两直线垂直时斜率乘积为-1求出直线AB的斜率和A的坐标,即可写出直线AB的方程;把直线AB与AC边上的中线方程联立求出交点B的坐标,然后设出AC的中点D和C的坐标,根据中点坐标公式列出方程组,求出解即可得到C的坐标,利用两点坐标写出直线BC的方程;由A和C的坐标写出直线AC的方程即可
试题解析:直线AB的斜率为2,∴AB边所在的直线方程为,
直线AB与AC边中线的方程交点为
设AC边中点D(x1,3-2x1),C(4-2y1,y1),∵D为AC的中点,由中点坐标公式得
边所在的直线方程为;
AC边所在的直线方程为y=1.
科目:高中数学 来源: 题型:
【题目】已知椭圆:的离心率为,左顶点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设直线:与椭圆交于不同两点,且满足.求证:直线恒过定点,并求出定点的坐标;
(Ⅲ)在(Ⅱ)的条件下,过作,垂足为,求的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在原点,一个长轴端点为,离心率,过P分别作斜率为的直线PA,PB,交椭圆于点A,B。
(1)求椭圆的方程;
(2)若,则直线AB是否经过某一定点?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某省举办的娱乐节目“快乐向前冲”的海选过程中设置了几名导师,负责对每批初选合格的选手进行考核并评分,并将其得分作为该选手的成绩,成绩大于等于60分的选手定为合格选手,直接参加第二轮比赛,不超过40分的选手将直接被淘汰,成绩在内的选手可以参加“待定”赛,如果通过,也可以参加第二轮比赛.
(1)已知成绩合格的200名参赛选手成绩的频率分布直方图如图,估计这200名参赛选手的成绩平均数和中位数;
(2)根据已有的经验,参加“待定”赛的选手能够进入第二轮比赛的概率如下表:
参赛选手成绩所在区间 | ||
每名选手能够进入第二轮的概率 |
假设每名选手能否通过“待定”赛相互独立,现有4名选手的成绩分别为(单位:分)43,45,52,58,记这4名选手在“待定”赛中通过的人数为随机变量,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的几何体中,四边形ABCD是矩形,平面ABCD⊥平面ABE,已知AB=2,AE=BE=,且当规定主视图方向垂直平面ABCD时,该几何体的侧视图的面积为.若M、N分别是线段DE、CE上的动点,则AM+MN+NB的最小值为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】由与圆心距离相等的两条弦长相等,想到与球心距离相等的两个截面圆的面积相等,用的是( )
A. 三段论推理 B. 类比推理 C. 归纳推理 D. 传递性关系推理
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列给出的输入、输出语句正确的是( )
①输入语句:INPUT a;b;c;
②输入语句:INPUT x=3;
③输出语句:PRINT A=4;
④输出语句:PRINT 20,3*2.
A.①②B.②③
C.③④ D.④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆及点.
(Ⅰ)若线段的垂直平分线交圆于两点,试判断四边形的形状,并给与证明;
(Ⅱ)过点的直线与圆交于两点,当的面积最大时,求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com