精英家教网 > 高中数学 > 题目详情
一农民有基本农田2亩,根据往年经验,若种水稻,则每季每亩产量为400公斤;若种花生,则每季每亩产量为100公斤.但水稻成本较高,每季每亩240元,而花生只需80元,且花生每公斤5元,稻米每公斤卖3元.现该农民手头有400元,两种作物各种多少,才能获得最大收益?
分析:先设该农民种x亩水稻,y亩花生时,能获得利润z元,根据约束条件画出可行域,再利用几何意义求最值,目标函数表示直线在y轴上的截距的420倍,只需求出可行域直线在y轴上的截距最大值即可.
解答:解:设该农民种x亩水稻,y亩花生时,能获得利润z元.
则z=(3×400-240)x+(5×100-80)y=960x+420y
y=-
16
7
x+
z
420
…(2分)
x+y≤2
240x+80y≤400
x≥0
y≥0

即  
x+y≤2
3x+y≤5
x≥0
y≥0
…(4分)
作出可行域如图阴影部分所示,…(8分)
作出基准直线y=-
16
7
x
,在可行域内平移直线y=-
16
7
x+
z
420

可知当直线过点B时,纵截距
z
420
有最大值,…(10分)
x+y=2
3x+y=5
解得B(
3
2
1
2
)
,…(12分)
故当x=1.5,y=0.5时,zmax=1650元,…(13分)
答:该农民种1.5亩水稻,0.5亩花生时,能获得最大利润,最大利润为1650元.…(14分)
点评:本题主要考查了简单的线性规划在实际生活中的应用,以及利用几何意义求最值.在解决线性规划的问题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域②求出可行域各个角点的坐标③将坐标逐一代入目标函数④验证,求出最优解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一农民有基本农田2亩,根据往年经验,若种水稻,则每季每亩产量为400公斤;若种花生,则每季每亩产量为100公斤.但水稻成本较高,每季每亩240元,而花生只需80元,且花生每公斤5元,稻米每公斤卖3元.现该农民手头有400元.
(1)设该农民种x亩水稻,y亩花生,利润z元,请写出约束条件及目标函数;
(2)问两种作物各种多少,才能获得最大收益?

查看答案和解析>>

科目:高中数学 来源:2010年广东湛江市第二中学高一下学期期末考试数学卷 题型:解答题

(本小题满分14分)
一农民有基本农田2亩,根据往年经验,若种水稻,则每季每亩产量为400公斤;若种花生,则每季每亩产量为100公斤。但水稻成本较高,每季每亩240元,而花生只需80元,且花生每公斤5元,稻米每公斤卖3元。现该农民手头有400元,两种作物各种多少,才能获得最大收益?

查看答案和解析>>

科目:高中数学 来源:2013届度广东省山一高二数学期文科数学试卷 题型:解答题

一农民有基本农田2亩,根据往年经验,若种水稻,则每季每亩产量为400公斤;若种花生,则每季每亩产量为100公斤。但水稻成本较高,每季每亩240元,而花生只需80元,且花生每公斤5元,稻米每公斤卖3元。现该农民手头有400元;(1)设该农民种亩水稻,亩花生,利润元,请写出约束条件及目标函数;(2)问两种作物各种多少,才能获得最大收益?

 

查看答案和解析>>

科目:高中数学 来源:2010年广东湛江市高一下学期期末考试数学卷 题型:解答题

(本小题满分14分)

一农民有基本农田2亩,根据往年经验,若种水稻,则每季每亩产量为400公斤;若种花生,则每季每亩产量为100公斤。但水稻成本较高,每季每亩240元,而花生只需80元,且花生每公斤5元,稻米每公斤卖3元。现该农民手头有400元,两种作物各种多少,才能获得最大收益?

 

查看答案和解析>>

同步练习册答案