【题目】湖北省2019年公布了新的高考方案,实行“3+1+2”模式.某学生按方案要求任意选择,则该生选择考历史和化学的概率为_______.
【答案】
【解析】
根据题意,利用列举法列出一名学生在“3+1+2”中对“1+2”选择的所有可能情况,再列举出选择考历史和化学的情况,最后根据古典概型求出该生选择考历史和化学的概率.
解:根据新的高考方案,可知“3+1+2”模式中,
“3”是高考中必考的三门科目:语文、数学、外语,
“1”是必须在物理和历史中选择一门,
“2”是在化学、地理、思想政治、生物中选择2门,
对于任意一名学生,其在“3+1+2”中对“1+2”选择,所有可能情况如下:
①物理,生物,化学;②物理,生物,地理;③物理,生物,政治;
④物理,化学,地理;⑤物理,化学,政治;⑥物理,地理,政治;
⑦历史,生物,化学;⑧历史,生物,地理;⑨历史,生物,政治;
⑩历史,化学,地理;历史,化学,政治;历史,地理,政治;
共12种不同选择方法,
其中选择考历史和化学有以下情况:
①历史,生物,化学;②历史,化学,地理;③历史,化学,政治,
共3中不同的选择,
则在所有选项中某学生选择考历史和化学的概率为:.
故答案为:.
科目:高中数学 来源: 题型:
【题目】某钢铁加工厂新生产一批钢管,为了了解这批产品的质量状况,检验员随机抽取了件钢管作为样本进行检测,将它们的内径尺寸作为质量指标值,由检测结果得如下频率分布表和频率分布直方图:
分组 | 频数 | 频率 |
合计 |
(1)求,;
(2)根据质量标准规定:钢管内径尺寸大于等于或小于为不合格,钢管内径尺寸在或为合格,钢管内径尺寸在为优等.钢管的检测费用为元/根,把样本的频率分布作为这批钢管的概率分布.
(i)若从这批钢管中随机抽取根,求内径尺寸为优等钢管根数的分布列和数学期望;
(ii)已知这批钢管共有根,若有两种销售方案:
第一种方案:不再对该批剩余钢管进行检测,扣除根样品中的不合格钢管后,其余所有钢管均以元/根售出;
第二种方案:对该批钢管进行一一检测,不合格钢管不销售,并且每根不合格钢管损失元,合格等级的钢管元/根,优等钢管元/根.
请你为该企业选择最好的销售方案,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角梯形中,,,,,,为线段(含端点)上的一个动点.设,,对于函数,下列描述正确的是( )
A.的最大值和无关B.的最小值和无关
C.的值域和无关D.在其定义域上的单调性和无关
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若,求曲线在点处的切线方程;
(2)若函数在其定义域内为增函数,求的取值范围;
(3)在(2)的条件下,设函数,若在上至少存在一点,使得成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面内两点M(4,﹣2),N(2,4).
(1)求MN的垂直平分线方程;
(2)直线l经过点A(3,0),且与直线MN平行,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数、,给定下列命题:(1)不等式的解集为;(2)函数在上单调递增,在上单调递减;(3)若函数有两个极值点,则;(4)若时,总有恒成立,则1.其中正确命题的序号为_________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某县畜牧技术员张三和李四9年来一直对该县山羊养殖业的规模进行跟踪调查,张三提供了该县某山羊养殖场年养殖数量(单位:万只)与相应年份(序号)的数据表和散点图(如图所示),根据散点图,发现与有较强的线性相关关系,李四提供了该县山羊养殖场的个数(单位:个)关于的回归方程.
年份序号x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
年养殖山羊y/万只 | 1.2 | 1.5 | 1.6 | 1.6 | 1.8 | 2.5 | 25 | 2.6 | 2.7 |
根据表中的数据和所给统计量,求关于的线性回归方程(参考统计量:,);
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com