精英家教网 > 高中数学 > 题目详情

【题目】已知O、A、B三地在同一水平面内,A地在O地正东方向2km处,B地在O地正北方向2km处,某测绘队员在A、B之间的直线公路上任选一点C作为测绘点,用测绘仪进行测绘,O地为一磁场,距离其不超过km的范围内会测绘仪等电子仪器形成干扰,使测量结果不准确,则该测绘队员能够得到准确数据的概率是(  )
A.1-
B.
C.1-
D.

【答案】A
【解析】解:由题意,△AOB是直角三角形,OA=OB=2,所以AB=2
O地为一磁场,距离其不超过km的范围为个圆,与AB相交于C,D两点,作OE⊥AB,则OE= , 所以CD=2,所以该测绘队员能够得到准确数据的概率是1﹣=1﹣
故选:A.

作出图形,以长度为测度,即可求出概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为 .等 差数列中, ,且公差

求数列的通项公式

(Ⅱ)是否存在正整数,使得?.若存在,求出的最小值;若 不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)是定义在R上的偶函数,对任意x∈R,都有f(x+2)=f(x﹣2),且当x∈[﹣2,0]时,f(x)=( x﹣1,若在区间(﹣2,6]内关于x的方程f(x)﹣loga(x+2)=0(a>1)有3个不同的实数根,则a的取值范围是(
A.(1,2)
B.(2,+∞)
C.(1,
D.( ,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱锥ABOC中,OA底面BOCOABOAC30°ABAC4BC,动点D在线段AB.

1)求证:平面COD⊥平面AOB

2)当OD⊥AB时,求三棱锥COBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O、A、B三地在同一水平面内,A地在O地正东方向2km处,B地在O地正北方向2km处,某测绘队员在A、B之间的直线公路上任选一点C作为测绘点,用测绘仪进行测绘,O地为一磁场,距离其不超过km的范围内会测绘仪等电子仪器形成干扰,使测量结果不准确,则该测绘队员能够得到准确数据的概率是(  )
A.1-
B.
C.1-
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+bx+1(a,b为实数),x∈R,
(1)若f(﹣1)=0,且函数f(x)的值域为[0,+∞),求F(x)的表达式;
(2)在(1)的条件下,当x∈[﹣2,2]时,g(x)=f(x)﹣kx是单调函数,求实数k的取值范围;
(3)设mn<0,m+n>0,a>0且f(x)为偶函数,判断F(m)+F(n)能否大于零.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表是一位母亲给儿子作的成长记录:

年龄/周岁

3

4

5

6

7

8

9

身高/cm

94.8

104.2

108.7

117.8

124.3

130.8

139.1

根据以上样本数据,她建立了身高 (cm)与年龄x(周岁)的线性回归方程为 ,给出下列结论:
①y与x具有正的线性相关关系;
②回归直线过样本的中心点(42,117.1);
③儿子10岁时的身高是 cm;
④儿子年龄增加1周岁,身高约增加 cm.
其中,正确结论的个数是
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中, 边的中点,将沿折起,使平面平面,连接得到如图所示的几何体.

(1)求证; 平面

(2)若二面角的平面角的正切值为求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】☉O为△ABC的内切圆,AB=9,BC=8,CA=10,点D,E分别为AB,AC上的点,且DE为☉O的切线,求△ADE的周长.

查看答案和解析>>

同步练习册答案