精英家教网 > 高中数学 > 题目详情
设n为自然数,则2n-2n-1+…+(-1)k2n-k+ …+(-1)n等于(    )

A.2n                             B.0                 C.-1                   D.1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等差数列{an}、{bn}的前n项和分别为Sn、Tn,若对任意自然数n都有
Sn
Tn
=
2n-3
4n-3
,则
a9
b5+b7
+
a3
b8+b4
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},如果数列{bn}满足b1=a1 ,bn=an+an-1 (n≥2,n∈N*),则称数列{bn}是数列{an}的“生成数列”
(1)若数列{an}的通项为an=n,写出数列{an}的“生成数列”{bn}的通项公式;
(2)若数列{cn}的通项为cn=2n+b,(其中b是常数),试问数列{cn}的“生成数列”{ln}是否是等差数列,请说明理由.
(3)已知数列{dn}的通项为dn=2n+n,设数列{dn}的“生成数列”{pn}的前n项和为Tn,问是否存在自然数m满足满足(Tm-2012)(Tm-6260)≤0,若存在请求出m的值,否则请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于数列{an},若存在确定的自然数T>0,使得对任意的自然数n∈N*,都有:an+T=an成立,则称数列{an}是以T为周期的周期数列.
(1)记Sn=a1+a2+a3+…+an,若{an}满足an+2=an+1-an,且S2=1007,S3=2010,求证:数列{an}是以6为周期的周期数列,并求S2009
(2)若{an}满足a1=p∈[0, 
1
2
)
,且an+1=-2an2+2an,试判断{an}是否为周期数列,且说明理由;
(3)由(1)得数列{an},又设数列{bn},其中bn=an+2n+
2009
2n
,问是否存在最小的自然数n(n∈N*),使得对一切自然数m≥n,都有bm>2009?请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对于数列{an},若存在确定的自然数T>0,使得对任意的自然数n∈N*,都有:an+T=an成立,则称数列{an}是以T为周期的周期数列.
(1)记Sn=a1+a2+a3+…+an,若{an}满足an+2=an+1-an,且S2=1007,S3=2010,求证:数列{an}是以6为周期的周期数列,并求S2009
(2)若{an}满足a1=p∈[0, 
1
2
)
,且an+1=-2an2+2an,试判断{an}是否为周期数列,且说明理由;
(3)由(1)得数列{an},又设数列{bn},其中bn=an+2n+
2009
2n
,问是否存在最小的自然数n(n∈N*),使得对一切自然数m≥n,都有bm>2009?请说明理由.

查看答案和解析>>

同步练习册答案