【题目】已知函数.
(1)求函数的极值;
(2)当时,证明:;
(3)设函数的图象与直线的两个交点分别为,,的中点的横坐标为,证明:.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知点在椭圆上,将射线绕原点逆时针旋转,所得射线交直线于点.以为极点,轴正半轴为极轴建立极坐标系.
(1)求椭圆和直线的极坐标方程;
(2)证明::中,斜边上的高为定值,并求该定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分14分)
已知函数的图象在上连续不断,定义:
,
.
其中,表示函数在上的最小值,表示函数在上的最大值.若存在最小正整数,使得对任意的成立,则称函数为上的“阶收缩函数”.
(Ⅰ)若,,试写出,的表达式;
(Ⅱ)已知函数,,试判断是否为上的“阶收缩函数”,如果是,求出对应的;如果不是,请说明理由;
(Ⅲ)已知,函数是上的2阶收缩函数,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c.满足2acosC+bcosC+ccosB=0.
(Ⅰ)求角C的大小;
(Ⅱ)若a=2,△ABC的面积为,求C的大小。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,分别过椭圆左、右焦点的动直线相交于点,与椭圆分别交于与不同四点,直线的斜率满足, 已知与轴重合时, .
(1)求椭圆的方程;
(2)是否存在定点使得为定值,若存在,求出点坐标并求出此定值,若不存在,
说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,,.
(Ⅰ)若,求的极值;
(Ⅱ)若函数的两个零点为,记,证明:.
【答案】(Ⅰ)极大值为,无极小值;(Ⅱ)证明见解析.
【解析】分析:(Ⅰ)先判断函数在上的单调性,然后可得当时,有极大值,无极小值.(Ⅱ)不妨设,由题意可得,即,又由条件得,构造,令,则,利用导数可得,故得,又,所以.
详解:(Ⅰ),
,
由得,
且当时,,即在上单调递增,
当时,,即在上单调递减,
∴当时,有极大值,且,无极小值.
(Ⅱ)函数的两个零点为,不妨设,
,.
,
即,
又,,
,
.
令,则
,
在上单调递减,
故,
,
即,
又,
.
点睛:(1)研究方程根的情况,可以通过导数研究函数的单调性、最大(小)值、函数的变化趋势等,根据题目要求,画出函数图象的大体图象,然后通过数形结合的思想去分析问题,可以使得问题的求解有一个清晰、直观的整体展现.
(2)证明不等式时常采取构造函数的方法,然后通过判断函数的单调性,借助函数的最值进行证明.
【题型】解答题
【结束】
22
【题目】在平面直角坐标系中,直线的参数方程为(为参数,).以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,已知曲线的极坐标方程为:.
(Ⅰ)求直线的普通方程与曲线的直角坐标方程;
(Ⅱ)设直线与曲线交于不同的两点,若,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, ,(其中, 为自然对数的底数, ……).
(1)令,若对任意的恒成立,求实数的值;
(2)在(1)的条件下,设为整数,且对于任意正整数, ,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】新高考最大的特点就是取消文理分科,除语文、数学、外语之外,从物理、化学、生物、政治、历史、地理这科中自由选择三门科目作为选考科目.某研究机构为了了解学生对全文(选择政治、历史、地理)的选择是否与性别有关,从某学校高一年级的1000名学生中随机抽取男生,女生各人进行模拟选科.经统计,选择全文的人数比不选全文的人数少人.
(1)估计在男生中,选择全文的概率.
(2)请完成下面的列联表;并估计有多大把握认为选择全文与性别有关,并说明理由;
附:,其中.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com