精英家教网 > 高中数学 > 题目详情
16.某款游戏共四关,玩家只有通过上一关才能继续进入下一关游戏,每通过一关可得10分,现在甲和乙来玩这款游戏,已知甲每关通过的概率是$\frac{1}{2}$,乙每关通过的概率是$\frac{2}{3}$.
(1)求甲、乙两人最后得分之和为20的概率;
(2)设甲的最后得分为X,求X的分布列和数学期望.

分析 (1)设“甲、乙最后得分之和为20”为事件A,“甲0分,乙(20分)”为事件B,“甲(10分),乙(10分)”为事件C,“甲(20分),乙0分”为事件D,利用独立重复试验的概率求解即可.
(2)X的所有可能取值为0,10,20,30,40.求出概率.得到X分布列,然后求解期望即可.

解答 解:(1)设“甲、乙最后得分之和为20”为事件A,“甲0分,乙(20分)”为事件B,“甲(10分),乙(10分)”为事件C,“甲(20分),乙0分”为事件D
则$P(B)=(1-\frac{1}{2})×(\frac{2}{3}{)^2}×(1-\frac{2}{3})=\frac{2}{27}$,
$P(C)=\frac{1}{2}×(1-\frac{1}{2})×\frac{2}{3}×(1-\frac{2}{3})=\frac{1}{18}$,
$P(D)=(\frac{1}{2}{)^2}×(1-\frac{1}{2})×(1-\frac{2}{3})=\frac{1}{24}$,
则$P(A)=P(B)+P(C)+P(D)=\frac{37}{216}$(6分)
(2)X的所有可能取值为0,10,20,30,40.
$P(X=0)=\frac{1}{2}$,
$P(X=10)=\frac{1}{2}×(1-\frac{1}{2})=\frac{1}{4}$,
$P(X=20)={(\frac{1}{2})^2}×(1-\frac{1}{2})=\frac{1}{8}$,
$P(X=30)={(\frac{1}{2})^3}×(1-\frac{1}{2})=\frac{1}{16}$,
$P(X=40)={(\frac{1}{2})^4}=\frac{1}{16}$,
X分布列为

X010203040
P$\frac{1}{2}$$\frac{1}{4}$$\frac{1}{8}$$\frac{1}{16}$$\frac{1}{16}$
$E(X)=0×\frac{1}{2}+10×\frac{1}{4}+20×\frac{1}{8}+30×\frac{1}{16}+40×\frac{1}{16}=\frac{75}{8}$(12分).

点评 本题考查独立重复试验的概率的求法,分布列以及期望的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.在实数集R中定义一种运算“*”,对任意a,b∈R,a*b为唯一确定的实数,且具有性质:
(1)对任意a∈R,有a*0=a;
(2)对任意a,b∈R,a*b=ab+(a*0)+(b*0).
关于函数f(x)=(ex)*$\frac{1}{{e}^{x}}$的性质,有如下命题:
①函数f(x)为偶函数;
②函数f(x)的单调递增区间为(-∞,0];
③函数f(x)在x=0处取得极小值;
④方程f(x)=4有唯一实数根
其中正确命题的序号是①③(经所有正确命题的序号填写在横线上).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.航空测量组的飞机航线和山顶在同一铅直平面内,已知飞机的高度为海拔10000m,速度为180km/h.飞机先看到山顶的俯角为15°,经过420s后又看到山顶的俯角为450,求山顶的海拔高度(取$\sqrt{2}$=1.4,$\sqrt{3}$=1.7,$\sqrt{6}$=2.2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.5个人排成一排,在下列情况下,各有多少种不同排法?
(1)甲不在排头,也不在排尾,
(2)甲、乙、丙三人必须在一起,
(3)甲、乙、丙三人两两不相邻,
(4)甲、乙、丙三人按从高到矮,自左向右的顺序.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知圆C1:(x-2)2+(y+1)2=1,圆C2与圆C1关于直线x-y-2=0对称,则圆C2的方程为(  )
A.(x-1)2+y2=1B.x2+(y-1)2=1C.(x+1)2+y2=1D.x2+(y+1)2=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.tan75°=(  )
A.2+$\sqrt{3}$B.1+$\sqrt{3}$C.$\frac{3+\sqrt{3}}{3}$D.2-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若x是三角形的最小角,则y=sinx的值域是(  )
A.[-1,1]B.(0,$\frac{\sqrt{3}}{2}$]C.(0,$\frac{\sqrt{3}}{2}$)D.(0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.动圆G与圆O1:x2+y2+2x=0外切,同时与圆O2:x2+y2-2x-8=0内切,设动圆圆心G的轨迹为Γ.
(1)求曲线Γ的方程;
(2)直线x=t(t>0)与曲线Γ相交于不同的两点M,N,以MN为直径作圆C,若圆C与y轴相交于两点P,Q,求△PQC面积的最大值;
(3)设D(${\sqrt{3}$,0),过D点的直线l(不垂直x轴)与曲线Γ相交于A,B两点,与y轴交于点E,若$\overrightarrow{EA}$=λ$\overrightarrow{AD}$,$\overrightarrow{EB}$=μ$\overrightarrow{BD}$,试探究λ+μ的值是否为定值,若是,求出该定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图:在平行六面体ABCD-A1B1C1D1中,M为A1C1与B1D1的交点.若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$,$\overrightarrow{A{A}_{1}}$=$\overrightarrow{c}$,则下列向量中与$\overrightarrow{BM}$相等的向量是(  )
A.-$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$+$\overrightarrow{c}$B.$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$+$\overrightarrow{c}$C.-$\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$+$\overrightarrow{c}$D.$\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$+$\overrightarrow{c}$

查看答案和解析>>

同步练习册答案