精英家教网 > 高中数学 > 题目详情
已知向量.其中O为坐标原点.
(Ⅰ)若且m>0,求向量的夹角;
(Ⅱ)若对任意实数α、β都成立,求实数m的取值范围.
【答案】分析:(Ⅰ)设它们的夹角为θ,利用向量的数量积公式表示出cosθ,将已知条件代入,利用特殊角的三角函数值求出两个向量的夹角.
(II)利用向量模的坐标公式将已知条件转化为m2+1+2msin(β-α)≥4对任意的α,β恒成立,通过对m分类讨论,求出
m2+1+2msin(β-α)的最小值,令最小值大于等于4,求出m的范围.
解答:解:(Ⅰ)设它们的夹角为θ,则
=
…(6分).
(Ⅱ)由
得(mcosα+sinβ)2+(msinα-cosβ)2≥4
即m2+1+2msin(β-α)≥4对任意的α,β恒成立…(9分)

解得m≤-3或m≥3…(13分).
点评:求向量的夹角问题,一般利用向量的数量积公式来解决;解决不等式恒成立问题,一般转化为函数的最值来解决.
练习册系列答案
相关习题

科目:高中数学 来源:2011-2012学年高三(上)数学练习试卷(第1-4章)(文科)(解析版) 题型:解答题

已知向量===,其中O为坐标原点,且0<α<<β<π
(1)若,求β-α的值;
(2)若=2,,求△OAB的面积S.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年重庆一中高三(上)期末数学试卷(理科)(解析版) 题型:解答题

已知向量.其中O为坐标原点.
(Ⅰ)若且m>0,求向量的夹角;
(Ⅱ)若对任意实数α、β都成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖南省怀化市会同县曲塘中学高三(上)第一次月考数学试卷(解析版) 题型:填空题

已知向量,其中O为坐标原点,若||≥2||对任意的实数α,β都成立,则实数λ的取值范围是   

查看答案和解析>>

科目:高中数学 来源:2011年四川省内江六中高考数学模拟试卷(文科)(解析版) 题型:解答题

已知向量===,其中O为坐标原点,且0<α<<β<π
(1)若,求β-α的值;
(2)若=2,,求△OAB的面积S.

查看答案和解析>>

同步练习册答案