精英家教网 > 高中数学 > 题目详情
点P是椭圆
x2
9
+
y2
4
=1上的一点,F1,F2是焦点,且∠F1PF2=60°,则△F1PF2的面积是(  )
A.
4
3
3
B.4
3
C.
4
3
D.
3
2
椭圆
x2
9
+
y2
4
=1中,a=3,b=2,
∴c=
a2-b2
=
5
,可得焦点为F1(-
5
,0),F2
5
,0).
由椭圆的定义,可得|PF1|+|PF2|=2a=6,
∵△F1PF2中,∠F1PF2=60°,
∴根据余弦定理,得|F1F2|2=|PF1|2+|PF2|2-2|PF1|•|PF2|cos60°,
即(2
5
2=(|PF1|+|PF2|)2-3|PF1|•|PF2|,可得20=36-3|PF1|•|PF2|,
由此解得|PF1|•|PF2|=
16
3

∴△F1PF2的面积S=
1
2
|PF1|•|PF2|sin60°=
4
3
3

故选:A
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知点P是椭圆
x2
36
+
y2
24
=1(x≠0,y≠0)
上的动点,F1,F2为椭圆的两个焦点,O是坐标原点,若M是∠F1PF2的角平分线上一点,且
F1M
MP
=0
,则|OM|的取值范围是(  )
A.(0,2
3
]
B.(0,2
3
)
C.[2
3
,3
D.[0,4]

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,已知AB=2c(常数c>0),以AB为直径的圆有一内接梯形ABCD,且ABCD,若椭圆以A,B为焦点,且过C,D两点,则当梯形ABCD的周长最大时,椭圆的离心率为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知过椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0)的焦点F(-1,0)的弦AB的中点M的坐标是(-
2
3
1
3
),则椭圆E的方程是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设m>0,则椭圆x2+4y2=4m的离心率是(  )
A.
1
2
B.
2
2
C.
3
2
D.与m的取值有关

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设P是椭圆
x2
169
+
y2
144
=1
上一点,F1、F2是椭圆的焦点,若|PF1|等于4,则|PF2|等于(  )
A.22B.21C.20D.13

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1,F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点,若存在点P为椭圆上一点,使得∠F1PF2=60°,则椭圆离心率e的取值范围是(  )
A.
2
2
≤e<1
B.0<e<
2
2
C.
1
2
≤e<1
D.
1
2
≤e<
2
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(理)已知F1,F2是椭圆
x2
100
+
y2
64
=1
的焦点,P为椭圆上一点,且F1PF2=
π
3
,求△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设F1,F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点,若该椭圆上一点P满足|PF2|=|F1F2|,且以原点O为圆心,以b为半径的圆与直线PF1有公共点,则该椭圆离心率e的取值范围是______.

查看答案和解析>>

同步练习册答案