精英家教网 > 高中数学 > 题目详情
设定义域为R的函数f(x),g(x)都有反函数,且函数f(x-1)和g-1(x-2)的图象关于直线y=x对称,若g(5)=2004,则f(4)为(  )
分析:由题意可得,f(x-1)与g-1(x-2)互为反函数,故f(x-1)=g(x)+2,由f(4)=g(5)+2求得结果.
解答:解:由题意可得,f(x-1)与g-1(x-2)互为反函数,
而y=g-1(x-2)的反函数为 y=g(x)+2,
∴f(x-1)=g(x)+2,
∴f(4)=g(5)+2=2004+2=2006,
故选B.
点评:题考查互为反函数的两个函数图象间的关系,求反函数的方法,得到f(x-1)=g(x)+2 是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设定义域为R的函数f(x)=
5|x-1|-1,x≥0
x2+4x+4,x<0
若关于x的方程f2(x)-(2m+1)f(x)+m2=0有7个不同的实数根,则实数m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义域为R的函数f(x)=
5|x-1|-1,x≥0
x2+4x+4,x<0
若关于x的方程f2(x)-(2m+1)f(x)+m2=0有5个不同的实数解,则m=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义域为R的函数f(x)=
-2x+a2x+1+b
(a,b为实数)若f(x)是奇函数.
(1)求a与b的值;
(2)判断函数f(x)的单调性,并证明;
(3)证明对任何实数x、c都有f(x)<c2-3c+3成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义域为R的函数f(x)=
|lg|x-1||,x≠1
0,          x=1
,则关于x的方程f2(x)+bf(x)+c=0有7个不同实数解的充要条件是 (  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义域为R的函数f(x)=
4
|x-1
(x≠1)
2
 (x=1)
,若关于x的方程f2(x)+bf(x)+c=0有三个不同的实数解x1、x2、x3,则x12+x22|x32等于(  )

查看答案和解析>>

同步练习册答案