精英家教网 > 高中数学 > 题目详情
1.若函数y=cos2x与函数y=sin(2x+φ)在[0,$\frac{π}{4}$]上的单调性相同,则φ的一个值为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{3π}{4}$D.$\frac{3π}{2}$

分析 由题意可得函数y=sin(2x+φ)在[0,$\frac{π}{4}$]上的单调递减,故2×$\frac{π}{4}$+φ≤2kπ+$\frac{3π}{2}$,且φ≥2kπ+$\frac{π}{2}$,k∈Z,由此求得φ 的范围.

解答 解:由于函数y=cos2x与函数y=sin(2x+φ)在[0,$\frac{π}{4}$]上的单调性相同,
函数y=cos2x在[0,$\frac{π}{4}$]上的单调递减,
故函数y=sin(2x+φ)在[0,$\frac{π}{4}$]上的单调递减,
故 2×$\frac{π}{4}$+φ≤2kπ+$\frac{3π}{2}$,且φ≥2kπ+$\frac{π}{2}$,k∈Z,由此求得$\frac{π}{2}$≤φ≤π,
故选:C.

点评 本题主要考查正弦函数、余弦函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知α是三角形的内角,且2sinα+cosα=1.
(1)求tanα的值;
(2)求sin2(π+α)-cos($\frac{π}{2}$+α)cos(π-α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\sqrt{1-2sinx}$.
(1)求函数f(x)的定义域;
(2)求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知全集U={1,2,3,4,5,6,7},M={1,3,5,7},N={2,5,6,7},则M∪(∁UN)=(  )
A.{1,3,5,7}B.{1,2,4}C.{1,3,4,5,7}D.{1,3,4,5,6}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知U=R,集合A={x|4≤x≤6},B={x|3<2x-1<19},求:
(1)A∪B
(2)(CUA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.一直线经过点A(-2,-3),它的斜率等于直线y=2x的斜率的2倍,则该直线的方程为4x-y+5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若P点是以A(-3,0)、B(3,0)为焦点,实轴长为2$\sqrt{5}$的双曲线与圆x2+y2=9的一个交点,则|PA|+|PB|=(  )
A.4$\sqrt{13}$B.2$\sqrt{14}$C.2$\sqrt{13}$D.3$\sqrt{14}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)的图象如图所示.
(1)求函数f(x)的解析式;
(2)求函数f(x)的定义域和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设集合A={x|-1≤x≤4},集合B={x|1≤x≤5}则A∩B={x|1≤x≤4}.

查看答案和解析>>

同步练习册答案