精英家教网 > 高中数学 > 题目详情
已知F1、F2分别是双曲线
x2
4
-
y2
b2
=1(b>0)
的左、右焦点,P为双曲线上的一点,若∠F1PF2=120°,且△F1PF2的三边长成等差数列,则双曲线的渐近线的斜率是(  )
A、±
5
3
4
B、±
3
5
4
C、±
5
3
2
D、±
3
5
2
分析:本题考查的是双曲线的简单性质,要求出双曲线的渐近线的斜率,关键是要根据已知构造一个关于实半轴长a与虚半轴长b的方程,解方程即可求出b值,从而求得双曲线的渐近线的斜率,注意到已知条件中,∠F1PF2=120°,且△F1PF2的三边长成等差数列,结合双曲线的定义,我们不难得到想要的方程,进而求出离心率.
解答:解:设|PF1|=m,|PF2|=n,
不妨设P在第一象限,
则由已知得
m-n=4
m2+n2+mn=(2c)2
n+2c=2m

∴c2-9c+14=0,
∴c=7或c=2(舍去)
得:b=3
5

则双曲线的渐近线的斜率是:±
3
5
2

故选D.
点评:解题过程中,为了解答过程的简便,我们把未知|PF1|设为m,|PF2|设为n,这时要求离心率e,我们要找出a,c之间的关系,则至少需要三个方程,由已知中,若∠F1PF2=120°,且△F1PF2的三边长成等差数列,我们不难得到两个方程,此时一定要注意双曲线的定义,即P点到两个焦点的距离之差为定值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•湖南)已知F1,F2分别是椭圆E:
x25
+y2=1
的左、右焦点F1,F2关于直线x+y-2=0的对称点是圆C的一条直径的两个端点.
(Ⅰ)求圆C的方程;
(Ⅱ)设过点F2的直线l被椭圆E和圆C所截得的弦长分别为a,b.当ab最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛二模)已知F1、F2分别是双曲线C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右焦点,P为双曲线右支上的一点,
PF2
F1F2
,且|
PF1
|=
2
|
PF2
|
,则双曲线的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2分别是双曲线
x2
a2
-
y2
b2
=1 (a>0, b>0)
的左、右焦点,过点F2与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M,若点M在以线段F1F2为直径的圆外,则双曲线离心率的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知F1,F2分别是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,且椭圆C的离心率e=
1
2
,F1也是抛物线C1:y2=-4x的焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点F2的直线l交椭圆C于D,E两点,且2
DF2
=
F2E
,点E关于x轴的对称点为G,求直线GD的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2分别是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的左,右焦点,P是双曲线的上一点,若
PF1
PF2
=0
|
PF1
|•|
PF2
|=3ab
,则双曲线的离心率是
 

查看答案和解析>>

同步练习册答案