精英家教网 > 高中数学 > 题目详情

【题目】如图(1)所示,已知四边形是由直角△和直角梯形拼接而成的,其中

.且点为线段的中点, 现将△沿进行翻折,使得二面角

的大小为,得到图形如图(2)所示,连接,点分别在线段上.

(1)证明:

(2)若三棱锥的体积为四棱锥体积的,求点到平面的距离.

【答案】(1)见解析(2)

【解析】试题分析:(1)直二面角定义可得,再根据已知条件,由线面垂直判定定理得平面,即得;另一方面,由计算可得;因此由线面垂直判定定理得平面,即得.(2)利用等体积法,将三棱锥的体积转化为,再根据椎体体积公式得,解得为点到平面的距离.

试题解析:(Ⅰ)证明:因为二面角的大小为,则

,故平面,又平面,所以

在直角梯形中,

所以,又

所以,即;又,故平面

因为平面,故.

(Ⅱ)设点到平面的距离为,因为,且

,做点到平面的距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设a1=2,an+1= ,bn=| |,n∈N* , 则数列{bn}的通项公式bn=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系内,已知A(3,3)是⊙C上一点,折叠该圆两次使点A分别与圆上不相同的两点(异于点A)重合,两次的折痕方程分别为x﹣y+1=0和x+y﹣7=0,若⊙C上存在点P,使∠MPN=90°,其中M,N的坐标分别为(﹣m,0)(m,0),则m的最大值为(
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的图象在处的切线方程;

(2)若任意,不等式恒成立,求实数的取值范围;

(3)设 ,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线经过点M( ).
(1)如果此双曲线的渐近线为 ,求双曲线的标准方程;
(2)如果此双曲线的离心率e=2,求双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)设,试讨论单调性;

(2)设,当时,任意,存在,使,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某气象站观测点记录的连续4天里, 指数与当天的空气水平可见度(单位)的情况如下表1:

哈尔滨市某月指数频数分布如下表2

(1)设,根据表1的数据,求出关于的回归方程;

(参考公式: ,其中

(2)小张开了一家洗车店,经统计,当不高于200时,洗车店平均每天亏损约2000元;当时,洗车店平均每天收入约4000元;当大于400时,洗车店平均每天收入约7000元;根据表2估计校长的洗车店该月份平均每天的收入.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=kx+b的图象过点(2,1),且b2﹣6b+9≤0
(1)求函数f(x)的解析式;
(2)若a>0,解关于x的不等式x2﹣(a2+a+1)x+a3+3<f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知⊙C过点P(1,1),且与⊙M:(x+2)2+(y+2)2=r2(r>0)关于直线x+y+2=0对称.
(1)求⊙C的方程;
(2)设Q为⊙C上的一个动点,求 的最小值.

查看答案和解析>>

同步练习册答案