精英家教网 > 高中数学 > 题目详情
1.已知y2=8x的焦点为F,则过F点且倾斜角为60°的直线被抛物线截得的弦长为(  )
A.8B.$4\sqrt{3}$C.$\frac{{4\sqrt{3}}}{3}$D.$\frac{32}{3}$

分析 求出抛物线的焦点为F(2,0),直线的斜率k=tan60°=$\sqrt{3}$,从而得到直线的方程.直线方程与抛物线方程联解消去y得3x2-20x+12=0,利用根与系数的关系可得x1+x2=$\frac{20}{3}$,再根据抛物线的定义加以计算,即可得到直线被抛物线截得的弦长.

解答 解:∵抛物线方程为y2=8x,2p=8,$\frac{p}{2}$=2,∴抛物线的焦点是F(2,0).
∵直线的倾斜角为60°,∴直线斜率为k=tan60°=$\sqrt{3}$
可得直线方程为:y=$\sqrt{3}$(x-2),
设直线交抛物线于点A(x1,y1),B(x2,y2),
联解,消去y得3x2-20x+12=0,
∴x1+x2=$\frac{20}{3}$,
根据抛物线的定义,可得|AF|=x1+$\frac{p}{2}$=x1+2,|BF|=x2+$\frac{p}{2}$=x2+2,
∴|AB|=x1+x2+4=$\frac{32}{3}$,即直线被抛物线截得的弦长为$\frac{32}{3}$.
故选:D.

点评 本题给出经过抛物线的焦点的直线倾斜角为60°,求直线被抛物线截得的弦长.着重考查了抛物线的定义与标准方程、一元二次方程根与系数的关系、直线与圆锥曲线的位置关系等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知底面直径和高都是4cm的圆柱,求它的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)定义域为D,区间(m,n)⊆D,对于任意的x1,x2∈(m,n)且x1≠x2,则“f(x)是(m,n)上的增函数”是“$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$”的(  )
A.充分不必要条件B.充分必要条件
C.必要不充分条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,F1,F2为椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1 (a>b>0)的左、右焦点,D,E是椭圆的两个顶点,椭圆的离心率e=$\frac{\sqrt{3}}{2}$,△DEF2的面积为1-$\frac{\sqrt{3}}{2}$.若M(x0,y0)在椭圆C上,则点N($\frac{{x}_{0}}{a}$,$\frac{{y}_{0}}{b}$)称为点M的一个“椭点”.直线l与椭圆交于A,B两点,A,B两点的“椭点”分别为P,Q,已知OP⊥OQ.
(1)求椭圆的标准方程;
(2)△AOB的面积是否为定值?若为定值,试求出该定值;若不为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.命题:“若p则q”的逆命题是(  )
A.若?p则?qB.若?q则?pC.若q则pD.若p则q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知中心在原点,离心率为$\frac{1}{2}$的椭圆E的一个焦点为圆:x2+y2-4x+2=0的圆心,求椭圆E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的体积为(  )
A.16π+$\sqrt{3}π$B.16π+8$\sqrt{3}$πC.16π+$\frac{8}{3}\sqrt{3}π$D.16π+$\frac{4}{3}\sqrt{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四边形ABCD是矩形,AB=1,$AD=\sqrt{2}$,E是AD的中点,BE与AC交于点F,GF⊥平面ABCD.
(Ⅰ)求证:AF⊥面BEG;
(Ⅱ)若AF=FG,求二面角E-AG-B所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数f(x)=f'(1)x3-2x2+3,则f'(2)的值为16.

查看答案和解析>>

同步练习册答案