精英家教网 > 高中数学 > 题目详情

已知函数f(x)=aln(x+1)-x,数列{an}满足a1=数学公式,ln(2an+1)=an+1•an+f(an+1•an
(1)讨论f(x)的单调性;
(2)若a=1,证明:数列数学公式是等差数列;
(3)在(2)的条件下,证明:a1+a2+…+an<n+ln数学公式

解:(1)f'(x)=-
当a≤0时,f'(x)<0,
则f(x)在(-1,+∞)递减;
当a>0时,x∈(-1,a-1),f'(x)>0;
x∈(a-1,+∞),f'(x)<0;
∴当a>0时,在(-1,a-1)上f(x)递增,
在(a-1,+∞)上f(x)递减…..(4分)
(2)∵函数f(x)=aln(x+1)-x,数列{an}满足a1=
ln(2an+1)=an+1•an+f(an+1•an),a=1,
∴ln(2an+1)=an+1•an+ln(an+1•an+1)-an+1•an
∴ln(2an+1)=ln(an+1•an+1),
∴2an+1=an+1•an+1,
∴an+1=


是等差数列…..(8分)
(3)当a=1时,f(x)在(-1,0)递增,
在(0,+∞)递减,
∴f(x)≤f(0)=0,
即:ln(x+1)≤x,
∴ln(
由(2)得:an=1-
∴a1+a2+…an
=1-+1-+…+1-
=n-(
<n-[ln()+ln()+…+ln()]
=n-[ln()]
=n-ln
=n+ln.…(13分)
分析:(1)f'(x)=-,当a≤0时,f'(x)<0,则f(x)在(-1,+∞)递减;当a>0时,x∈(-1,a-1),f'(x)>0;x∈(a-1,+∞),f'(x)<0.由此能f(x)的单调性.
(2)由an+1=,知,所以,由此能证明数列是等差数列.
(3)当a=1时,f(x)在(-1,0)递增,在(0,+∞)递减,所以ln(x+1)≤x,故ln(,由此能够证明a1+a2+…an=n-(
点评:本题考查数列与不等式的综合,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案