解:(1)f'(x)=-
当a≤0时,f'(x)<0,
则f(x)在(-1,+∞)递减;
当a>0时,x∈(-1,a-1),f'(x)>0;
x∈(a-1,+∞),f'(x)<0;
∴当a>0时,在(-1,a-1)上f(x)递增,
在(a-1,+∞)上f(x)递减…..(4分)
(2)∵函数f(x)=aln(x+1)-x,数列{a
n}满足a
1=
,
ln(2a
n+1)=a
n+1•a
n+f(a
n+1•a
n),a=1,
∴ln(2a
n+1)=a
n+1•a
n+ln(a
n+1•a
n+1)-a
n+1•a
n,
∴ln(2a
n+1)=ln(a
n+1•a
n+1),
∴2a
n+1=a
n+1•a
n+1,
∴a
n+1=
,
∴
,
∴
,
∴
是等差数列…..(8分)
(3)当a=1时,f(x)在(-1,0)递增,
在(0,+∞)递减,
∴f(x)≤f(0)=0,
即:ln(x+1)≤x,
∴ln(
≤
,
由(2)得:a
n=1-
,
∴a
1+a
2+…a
n
=1-
+1-
+…+1-
=n-(
<n-[ln(
)+ln(
)+…+ln(
)]
=n-[ln(
)]
=n-ln
=n+ln
.…(13分)
分析:(1)f'(x)=-
,当a≤0时,f'(x)<0,则f(x)在(-1,+∞)递减;当a>0时,x∈(-1,a-1),f'(x)>0;x∈(a-1,+∞),f'(x)<0.由此能f(x)的单调性.
(2)由a
n+1=
,知
,所以
,由此能证明数列
是等差数列.
(3)当a=1时,f(x)在(-1,0)递增,在(0,+∞)递减,所以ln(x+1)≤x,故ln(
,由此能够证明a
1+a
2+…a
n=n-(
.
点评:本题考查数列与不等式的综合,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答.