精英家教网 > 高中数学 > 题目详情

【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2
(Ⅰ)求cosB;
(Ⅱ)若a+c=6,△ABC面积为2,求b.

【答案】解:(Ⅰ)sin(A+C)=8sin2
∴sinB=4(1﹣cosB),
∵sin2B+cos2B=1,
∴16(1﹣cosB)2+cos2B=1,
∴(17cosB﹣15)(cosB﹣1)=0,
∴cosB=
(Ⅱ)由(1)可知sinB=
∵S△ABC= acsinB=2,
∴ac=
∴b2=a2+c2﹣2accosB=a2+c2﹣2× ×
=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,
∴b=2.
【解析】(Ⅰ)利用三角形的内角和定理可知A+C=π﹣B,再利用诱导公式化简sin(A+C),利用降幂公式化简8sin2 ,结合sin2B+cos2B=1,求出cosB,
(Ⅱ)由(1)可知sinB= ,利用勾面积公式求出ac,再利用余弦定理即可求出b.
【考点精析】利用二倍角的正弦公式和余弦定理的定义对题目进行判断即可得到答案,需要熟知二倍角的正弦公式:;余弦定理:;;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设有下面四个命题
p1:若复数z满足 ∈R,则z∈R;
p2:若复数z满足z2∈R,则z∈R;
p3:若复数z1 , z2满足z1z2∈R,则z1=
p4:若复数z∈R,则 ∈R.
其中的真命题为(  )
A.p1 , p3
B.p1 , p4
C.p2 , p3
D.p2 , p4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c= ,则C=(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当曲线与直线有两个相异的交点时,实数的取值范围是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,底面为正三角形,侧棱底面.已知 的中点,

(1)求证:平面平面

(2)求证:A1C∥平面

(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)求不等式的解集.

(2)已知.若对于任意的,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln(x+1)﹣ax,a∈R.
(1)求函数f(x)的单调区间;
(2)当x>1时,f(x﹣1)≤ 恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x+sin2x.给出以下四个命题:
x>0,不等式f(x)<2x恒成立;
k∈R,使方程f(x)=k有四个不相等的实数根;
③函数f(x)的图象存在无数个对称中心;
④若数列{an}为等差数列,且f(al)+f(a2)+f(a3)=3π,则a2=π.
其中的正确命题有 . (写出所有正确命题的序号)

查看答案和解析>>

同步练习册答案