精英家教网 > 高中数学 > 题目详情
6.函数y=x2-x-1的顶点坐标是 (  )
A.(-$\frac{1}{2}$,$\frac{5}{4}$)B.($\frac{1}{2}$,-$\frac{5}{4}$)C.(-$\frac{1}{2}$,-$\frac{5}{4}$)D.($\frac{1}{2}$,$\frac{5}{4}$)

分析 根据题意,运用配方法可得y=x2-x-1=(x-$\frac{1}{2}$)2-$\frac{5}{4}$,即可得该二次函数的顶点坐标,即可得答案.

解答 解:根据题意,y=x2-x-1=(x-$\frac{1}{2}$)2-$\frac{5}{4}$,
即函数y=x2-x-1的顶点坐标($\frac{1}{2}$,$\frac{5}{4}$);
故选:B.

点评 本题考查二次函数的基本性质,求二次函数的顶点坐标可以用配方法,也可以用公式直接计算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ln(1+x)[2+ln(1+x)]-2x.
(1)证明:函数f(x)在区间(0,+∞)上单减;
(2)若不等式(n+$\frac{k}{2}$)ln(1+$\frac{1}{n}$)≤1对?∈N*都成立,求k+2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在平行六面体ABCD-A1B1C1D1中,O是B1D1的中点,求证:B1C∥平面ODC1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,空间四边形ABCD的每条边和AC,BD的长都等于a,点M,N分别是AB,CD的中点,求证:MN⊥AB,MN⊥CD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=log${\;}_{\frac{1}{2}}$(ax2+2x+1)的定义域为全体实数,则a的取值范围是a>1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知方程x=3-lgx,下列说法正确的是(  )
A.方程x=3-lgx的解在区间(0,1)内B.方程x=3-lgx的解在区间(1,2)内
C.方程x=3-lgx的解在区间(2,3)内D.方程x=3-lgx的解在区间(3,4)内

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若一元二次不等式x2-$\frac{2}{\sqrt{a}}$x+1-$\frac{1}{b}$>0(b>a)的解集为{x|x≠$\frac{1}{\sqrt{a}}$},则$\frac{4}{a-1}$+$\frac{16}{b-1}$的最小值为(  )
A.16B.25C.36D.49

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.
(1)若a=1.5,问:观察者离墙多远时,视角θ最大?
(2)若tanθ=$\frac{1}{2}$,当a变化时,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知O为坐标原点,实数x,y满足$\left\{\begin{array}{l}{x-y+1≤0}\\{3x+4y≤12}\\{x-1≥0}\end{array}\right.$,P(x,y)为该不等式组所表示的平面区域内任意一点,使z=x+2y取最大值的点为A点,则|OP|•|AO|•cos∠AOP的最大值等于(  )
A.$\frac{97}{16}$B.$\frac{11}{2}$C.$\frac{167}{28}$D.$\frac{38}{7}$

查看答案和解析>>

同步练习册答案