精英家教网 > 高中数学 > 题目详情

【题目】某中学在高二年级开设大学先修课程《线性代数》,共有50名同学选修,其中男同学30名,女同学20名.为了对这门课程的教学效果进行评估,学校按性别采用分层抽样的方法抽取5人进行考核.

(Ⅰ)求抽取的5人中男、女同学的人数;

(Ⅱ)考核前,评估小组打算从抽取的5人中随机选出2名同学进行访谈,求选出的两名同学中恰有一名女同学的概率.

【答案】(Ⅰ)男同学的人数为3,女同学的人数为32.(Ⅱ) .

【解析】试题分析:本题主要考查分层抽样、随机事件的概率等基础知识,考查学生的分析问题解决问题的能力、计算能力.第一问,利用分层抽样中各层的样本容量÷总容量均相等,求出男同学和女同学人数;第二问,结合第一问的结论,将抽取的5人用字母表示出来,分别写出5人中任取2人的情况,在总数10种中选出符合题意的6种情况,再求概率.

试题解析:(1)抽取的5人中男同学的人数为,女同学的人数为. 4

2)记3名男同学为2名女同学为.5人中随机选出2名同学,所有可能的结果有 ,共10. 7

表示:选出的两名同学中恰有一名女同学这一事件,则中的结果有6个,它们是: . 10

所以 选出的两名同学中恰有一名女同学的概率[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2015/4/13/1572069106720768/1572069112365056/EXPLANATION/c126479f438e40f5b341b899ee0cfe87.png]. 12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知多面体均垂直于平面ABC

1)证明:平面

2)求平面与平面所成的锐角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在梯形ABCD中,DCABDCCBEAB的中点,且AB=2BC=2CD=4(如图所示),将ADE沿DE翻折,使AB=2(如图所示),F是线段AD上一点,且AF=2DF

(Ⅰ)求四棱锥A-BCDE的体积;

(Ⅱ)在线段BE上是否存在一点G,使EF∥平面ACG?若存在,请指出点G的位置,并证明你的结论;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:

①sin213°+cos217°﹣sin13°cos17°;

②sin215°+cos215°﹣sin15°cos15°;

③sin218°+cos212°﹣sin18°cos12°;

④sin2(﹣18°)+cos248°﹣sin(﹣18°)cos48°

⑤sin2(﹣25°)+cos255°﹣sin(﹣25°)cos55°

(Ⅰ)试从上述五个式子中选择一个,求出这个常数;

(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为一三角恒等式sin2α+cos2(30°﹣α)﹣sinαcos(30°﹣α)= ,并证明你的结论.

(参考公式:sin(α±β)=sinαcosβ±cosαsinβ,cos(α±β)=cosαcosβsinαsinβsin2α=2sinαcosα,cos2α=cos2α﹣sin2α=2cos2α﹣1=1﹣2sin2α)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个三棱锥的三视图是三个直角三角形,如图所示,则该三棱锥的外接球的表面积为__________

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395438592/STEM/3d69fcdc50254164a6fb81896ba4fb1c.png]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某校组织的高二女子排球比赛中,有两个球队进入决赛,决赛采用74胜制.假设两队在每场比赛中获胜的概率都是.并记需要比赛的场数为

(Ⅰ)求大于4的概率;

(Ⅱ)求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解下列关于x的方程:

1;(2

3;(4.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求方程的解集;

2)若关于x的方程上恒有解,求m的取值范围;

3)若不等式上恒成立,求m的取值范围;

4)若关于x的方程上有解,那么当m取某一确定值时,方程所有解的和记为,求所有可能值及相应的m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中,.直角梯形通过直角梯形以直线为轴旋转得到,且使得平面平面.

(Ⅰ)求证:平面平面

(Ⅱ)延长至点,使为平面内的动点,若直线与平面所成的角为,且,求点到点的距离的最小值.

查看答案和解析>>

同步练习册答案