精英家教网 > 高中数学 > 题目详情
设双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的右顶点为A,P为双曲线上的一个动点(不是顶点),从点A引双曲线的两条渐近线的平行线,与直线OP分别交于Q,R两点,其中O为坐标原点,则|OP|2与|OQ|•|OR|的大小关系为(  )
A.|OP|2<|OQ|•|OR|B.|OP|2>|OQ|•|OR|C.|OP|2=|OQ|•|OR|D.不确定
取特殊点P(c,
b2
a
),
则直线OP的方程为y=
b2
ac
x,
又直线AQ的方程为y=
b
a
(x-a),
直线AR的方程为y=-
b
a
(x-a),
解得Q,R的坐标为(
ac
c-b
b2
c-b
),(
ac
c+b
b2
c+b
),
易得|OP|2=|OQ|•|OR|.
故选C
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设双曲线
x2
a2
-
y2
b2
=1
的一条渐近线与抛物线y=x2+1只有一个公共点,则双曲线的离心率为(  )
A、
5
4
B、5
C、
5
2
D、
5

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线
x2
a2
-
y2
b2
=1
的离心率e=
2
3
3
,过点A(0,-b)和B(a,0)的直线与原点的距离为
3
2

(1)求双曲线方程;
(2)直线y=kx+5(k≠0)与双曲线交于不同的两点C、D,且C、D两点都在以A为圆心的同一个圆上,求k值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2是离心率为
5
的双曲线
x2
a2
-
y 2
b2
=1(a>0,b>0)
的左、右两个焦点,若双曲线右支上存在一点P,使(
OP
+
OF2
)•
F2P
=0
(O为坐标原点)且|PF1|=λ|PF2|则λ的值为(  )
A、2
B、
1
2
C、3
D、
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的虚轴长为2,焦距为2
5
,则双曲线的渐近线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的虚轴长为2,焦距为2
3
,则双曲线的渐近线方程为(  )

查看答案和解析>>

同步练习册答案