精英家教网 > 高中数学 > 题目详情

函数y=x2+2x-3在区间[-3,0]上的值域为


  1. A.
    [-4,-3]
  2. B.
    [-4,0]
  3. C.
    [-3,0]
  4. D.
    [0,4]
B
分析:由函数的解析式,我们可以分析函数的开口方向及对称轴,结合二次函数的性质,易求出函数的最大值和最小值,进而得到函数的值域.
解答:函数y=x2+2x-3的图象是开口朝上,且以x=-1为对称轴的抛物线
故在区间[-3,0]上
当x=-3时,ymax=0
当x=-1时,ymin=-4
故函数y=x2+2x-3在区间[-3,0]上的值域为[-4,0]
故选B
点评:本题考查的知识点二次函数在闭区间上的最值,其中分析出函数的图象和性质进而分析出函数的最值,是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=x2-2x+5(x∈[-1,2])的最大值是
8
8
,最小值是
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
x2-2x+1
的值域是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x2+2x,x∈[-2,3],则值域为
[-1,15]
[-1,15]

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A为函数y=
x-1
x2-3x+2
的定义域,集合B为函数y=
-x2+2x+4
的值域,则A∩B=
[0,1)∪(1,2)∪(2,
5
]
[0,1)∪(1,2)∪(2,
5
]

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=x2+2x+3(x≥0)的值域为(  )

查看答案和解析>>

同步练习册答案