精英家教网 > 高中数学 > 题目详情
13.根据下列条件求直线方程:
(1)已知直线l的倾斜角为60°,求与直线l平行且过点(-3,2)的直线方程;
(2)求过点A(-3,1)的直线中,与原点距离最远的直线方程.

分析 (1)(1)由直线的倾斜角为60°,可得斜率k=tan60°=$\sqrt{3}$.利用点斜式即可得出;
(2)根据题意可知过A点且垂直于OA的直线离原点最远,先求出OA的斜率,根据两直线垂直时斜率乘积为-1得到所求直线的斜率,根据A点的坐标和直线的斜率写出直线的方程即可.

解答 解:(1)由直线的倾斜角为60°,
可得斜率k=tan60°=$\sqrt{3}$.可得点斜式为:y-2=$\sqrt{3}$(x+3),
即:$\sqrt{3}$x-y+2+3$\sqrt{3}$=0;
(2)设原点为O,则所求直线过点A(-3,1)且与OA垂直,
又kOA=-$\frac{1}{3}$,
∴所求直线的斜率为3,
其方程为y-1=3(x+3),
即3x-y+10=0.

点评 本题考查求直线的点斜式方程,考查学生掌握两直线垂直时的条件,会根据一点坐标和斜率写出直线的方程.此题的关键是找出最远的直线方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.值域是(0,+∞)的函数是(  )
A.y=x2-x+1B.y=2xC.y=x+1D.y=log2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若两个函数的图象有一个公共点,并在该点处的切线相同,就说明这两个函数有why点,已知函数f(x)=lnx和g(x)=ex+m有why点,则m所在的区间为(  )
A.(-3,-e)B.(-e,-$\frac{21}{8}$)C.(-$\frac{21}{8}$,-$\frac{13}{6}$)D.(-$\frac{13}{6}$,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数g(x)=(x3-x)f(x)是偶函数,则函数f(x)可能是(  )
A.1B.|x|C.x+$\frac{1}{x}$D.x2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知m∈R,当点(-4,6)到直线l:(m-2)x-y+3m+2=0的距离最大时,m的值为(  )
A.2B.-$\frac{1}{2}$C.$\frac{3}{2}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求下列各三角函数值:
(1)sin$\frac{5π}{12}$;  
(2)sin15°cos15°;  
(3)1-2sin2$\frac{π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在四面体OABC中,棱OA,OB,OC两两垂直,且|OA|=1,|OB|=2,|OC|=3,G为△ABC的重心,则$\overrightarrow{OG}$•($\overrightarrow{OA}$+$\overrightarrow{OB}$-$\overrightarrow{OC}$)=-$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知点A、B是抛物线x2=4y上任意两点,过点A,B分别作抛物线的切线,两切线交于点M(t,-2),(t≠0).
(1)求证:切线MA与MB的斜率之积为定值.
(2)设直线AB的中垂线交x轴于点P,交y轴于点Q,当1≤t≤2$\sqrt{2}$时,求$\frac{|PQ|}{|AB|}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆E的方程是$\frac{x^2}{8}+\frac{y^2}{2}=1$,直线x=0与E交于点A,B,直线x=2与E交于点C,D.
(1)求同时经过A,B,C,D四个点的圆的方程;
(2)动圆M与(1)中的圆外切,且与直线x=-4相切,问动圆M的圆心在什么曲线上运动?

查看答案和解析>>

同步练习册答案