精英家教网 > 高中数学 > 题目详情
12.若集合A={x|-1<x<2},B={x|(2x+1)(3-x)<0},则A∩B是(  )
A.{x|2<x<3}B.{x|-$\frac{1}{2}$<x<2}C.{x|-1$<x<-\frac{1}{2}$}D.{x|-1$<x<\frac{1}{2}$或2<x<3}

分析 利用一元二次不等式的性质先求出集合B,再由交集的定义求解.

解答 解:∵集合A={x|-1<x<2},
B={x|(2x+1)(3-x)<0}={x|x<-$\frac{1}{2}$或x>3},
∴A∩B={x|-1<x<-$\frac{1}{2}$}.
故选:C.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意一元二次不等式的性质和交集的定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.点P(-1,0)在动直线mx+y+2-m=0(m∈R )上射影为M,则点M到直线x-y=5的距离的最大值是3$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.抛物线y=ax2(a≠0)的准线方程是(  )
A.$x=\frac{a}{4}$B.$x=-\frac{1}{4a}$C.$y=\frac{a}{4}$D.$y=-\frac{1}{4a}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知平面直角坐标系xoy中,以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C1方程为ρ=2sinθ;C2的参数方程为$\left\{\begin{array}{l}x=-1+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t为参数).
(Ⅰ)写出曲线C1的直角坐标方程和C2的普通方程;
(Ⅱ)设点P为曲线C1上的任意一点,求点P 到曲线C2距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1,求过椭圆内点P(4,2)且被P平分的弦所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=lnx+(x-b)2(b∈R)在区间$[{\frac{1}{2},2}]$上存在单调递增区间,则实数b的取值范围是(  )
A.$({-∞,\frac{3}{2}})$B.$({-∞,\frac{9}{4}})$C.(-∞,3)D.$({-∞,\sqrt{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设实数a,b满足a2+b2=1,则乘积ab的最大值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某城市自来水厂向全市供应生产与生活用水,蓄水池现有水9千吨,水厂每小时向池中注入2千吨水,同时向全市供水,x小时内供水总量为8$\sqrt{x}$,问:
(1)多少小时时池内水量最少?
(2)当蓄水池水量少于3千吨时,供水就会出现紧张现象,那么出现这种紧张情况有多长时间?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.下列说法中不正确的是③④⑤(只需填写序号)
①设集合A=φ,则φ⊆A;
②若集合A={x|x2-1=0},B={-1,1},则A=B;
③在集合A到B的映射中,对于集合B中的任何一个元素y,在集合A中都有唯一的一个元素x与之对应;
④函数f(x)=$\frac{1}{x}$的单调减区间是(-∞,0)∪(0,+∞);
⑤设集合A={x|1<x<2},B={x|x<a},若A⊆B,则a>2.

查看答案和解析>>

同步练习册答案