精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ax3-bx+1,a,b∈R,若f(-1)=-2,则f(1)=________.

4
分析:根据函数表达式,给出f(-x)=-ax3+bx+1,化简整理得f(x)+f(-x)=2,最后取x=1代入,结合f(-1)=-2,即可算出f(1)的值.
解答:∵f(x)=ax3-bx+1,
∴f(-x)=a(-x)3-b(-x)+1=-ax3+bx+1,
得f(x)+f(-x)=(ax3-bx+1)+(-ax3+bx+1)=2
令x=1,得f(1)+f(-1)=2,
∵f(-1)=-2,∴f(1)=2-f(-1)=2+2=4
故答案为:4
点评:本题给出三次多项式函数,在已知f(-1)的情况下求f(1)的值,着重考查了函数的奇偶性的知识,属于基础题.请同学们注意解题过程中,整体代换的思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案