精英家教网 > 高中数学 > 题目详情
三次函数f(x)=x3+bx2+cx+d(b,c,d∈R)在区间[-1,2]上是减函数,那么b+c的取值范围是(  )
A、(-∞, 
15
2
)
B、(-∞, -
15
2
)
C、A(x0,f(x0))
D、(-∞,-
15
2
]
考点:利用导数研究函数的单调性
专题:导数的概念及应用,不等式的解法及应用
分析:求出原函数的导函数,由导函数在x∈[-1,2]上恒成立列出关于b,c的不等式组,然后利用线性规划知识求得b+c的取值范围.
解答: 解:由f(x)=x3+bx2+cx+d,
则f′(x)=3x2+2bx+c.
要使函数f(x)=x3+bx2+cx+d的区间[-1,2]上是减函数,
则f′(x)=3x2+2bx+c≤0在x∈[-1,2]上恒成立.
所以
f′(-1)≤0
f′(2)≤0
,即
3-2b+c≤0
12+4b+c≤0

以b为横轴,c为纵轴画出可行域如图,
联立
3-2b+c=0
12+4b+c=0

解得
b=-
3
2
c=-6

所以可行域上顶点为(-
3
2
,-6).
则b+c的最大值为-
3
2
-6=-
15
2

故b+c的取值范围是(-∞,-
15
2
].
故选:D
点评:本题考查了函数的单调性与导函数之间的关系,训练了利用线性规划知识求最值,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

“m=1”是“直线(m-1)x+y-2=0与直线x+(m-1)y+5=0互相垂直”的(  )
A、充分必要条件
B、充分不必要条件
C、必要不充分条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三角形的三个顶点是A(-5,0),B(3,-3),C(0,2),求BC边所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线x2-
y2
2
=1.
(1)求以点A(2,1)为中点的弦所在直线方程;
(2)过点A(2,1)的直线L与所给的双曲线交于两点P1及P2,求线段P1P2的中点P的轨迹方程.
(3)过点B(1,1)能否作直线m,使m与所给双曲线交于两点Q1及Q2,且点B是线段Q1Q2的中点?这样的直线m如果存在,求出它的方程;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=0,a2=2,且对任意m、n∈N*都有a2m-1+a2n-1=2am+n-1+2(m-n)2
(1)求a3,a5
(2)设cn=(an+1-an) qn-1(q≠0,n∈N*),求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-kx-3,x∈(-1,5].
(Ⅰ)当k=2时,求函数f(x)的值域;
(Ⅱ)若函数f(x)在区间(-1,5]上是单调函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式|x-5|-|x-1|>0的解集为(  )
A、(-∞,3)
B、(-∞,-3)
C、(3,+∞)
D、(-3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的每项均为正数,首项a1=1.记数列{an}前n项和为Sn,满足a13+a23+…+an3=Sn2
(1)求a2的值及数列{an}的通项公式;
(2)若bn=
1
anan+3
,记数列{bn}前n项和为Tn,求证:Tn
11
18

查看答案和解析>>

科目:高中数学 来源: 题型:

两个正数a,b的等差中项是
5
2
,一个等比中项是
6
,且a>b,则椭圆
x2
a2
+
y2
b2
=1的离心率e等于(  )
A、
13
3
B、
13
C、
5
3
D、
3
2

查看答案和解析>>

同步练习册答案