精英家教网 > 高中数学 > 题目详情

【题目】将函数的图像向左平移个单位长度,再将图像上所有点的横坐标伸长到原来的倍(纵坐标不变),得到的图像.

(1)求的单调递增区间;

(2)若对于任意的,不等式恒成立,求实数的取值范围.

【答案】(1) .(2) .

【解析】

(1)本题首先可通过题意中函数图像的转化得到,然后通过正弦函数的相关性质即可计算出函数的单调递增区间;

(2)首先通过计算出函数的最大值以及最小值,然后将转化为,即可列出不等式组,通过计算得出结果。

(1)函数的图像向左平移个单位长度可得

然后将上所有点的横坐标伸长到原来的倍可得

,即

的单调递增区间为.

(2)因为,所以

所以函数上的最大值为,此时,即

最小值为,此时,即.

对于任意的,不等式恒成立,

恒成立,

所以,故实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公园草坪上有一扇形小径(如图),扇形半径为,中心角为,甲由扇形中心出发沿以每秒2米的速度向快走,同时乙从出发,沿扇形弧以每秒米的速度向慢跑,记秒时甲、乙两人所在位置分别为,,通过计算,判断下列说法是否正确:

(1)当时,函数取最小值;

(2)函数在区间上是增函数;

(3)若最小,则

(4)上至少有两个零点;

其中正确的判断序号是______(把你认为正确的判断序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数其中无理数.

(Ⅰ)若函数有两个极值点的取值范围

(Ⅱ)若函数的极值点有三个最小的记为最大的记为的最大值为的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为Ⅰ)求曲线的直角坐标方程,并指出其表示何种曲线;(Ⅱ)设直线与曲线交于两点,若点的直角坐标为,试求当时,的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ax2-a-lnx,其中a ∈R.

(I)讨论f(x)的单调性

(II)确定a的所有可能取值,使得在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数)。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】清华大学自主招生考试题中要求考生从ABC三道题中任选一题作答,考试结束后,统计数据显示共有600名学生参加测试,选择ABC三题答卷数如下表:


A

B

C

答卷数

180

300

120

)负责招生的教授为了解参加测试的学生答卷情况,现用分层抽样的方法从600份答案中抽出若干份答卷,其中从选择A题作答的答卷中抽出了3份,则应分别从选择BC题作答的答卷中各抽出多少份?

)测试后的统计数据显示,A题的答卷得优的有60份,若以频率作为概率,在()问中被抽出的选择A题作答的答卷中,记其中得优的份数为,求的分布列及其数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下四个命题中:①在回归分析中,可用相关系数r的值判断模型的拟合效果,|r|越大,模拟的拟合效果越好;②在一组样本数据不全相等)的散点图中,若所有样本点都在直线上,则这组样本数据的线性相关系数为;③对分类变量xy的随机变量来说,越小,判断xy有关系的把握程度越大.其中真命题的个数为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求的定义域;

2)求函数在区间内的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左、右焦点分别为 ,且离心率为 为椭圆上任意一点,当时, 的面积为1.

(1)求椭圆的方程;

(2)已知点是椭圆上异于椭圆顶点的一点,延长直线 分别与椭圆交于点 ,设直线的斜率为,直线的斜率为,求证: 为定值.

【答案】(1);(2)

【解析】试题分析:(1)设由题,由此求出,可得椭圆的方程;

(2)设

当直线的斜率不存在时,可得

当直线的斜率不存在时,同理可得.

当直线的斜率存在时,

设直线的方程为,则由消去通过运算可得

,同理可得,由此得到直线的斜率为

直线的斜率为,进而可得.

试题解析:(1)设由题

解得,则

椭圆的方程为.

(2)设

当直线的斜率不存在时,设,则

直线的方程为代入,可得

,则

直线的斜率为,直线的斜率为

当直线的斜率不存在时,同理可得.

当直线的斜率存在时,

设直线的方程为,则由消去可得:

,则,代入上述方程可得

,则

设直线的方程为,同理可得

直线的斜率为

直线的斜率为

.

所以,直线的斜率之积为定值,即.

型】解答
束】
21

【题目】已知函数 ,在处的切线方程为.

(1)求

(2)若,证明: .

查看答案和解析>>

同步练习册答案