精英家教网 > 高中数学 > 题目详情

【题目】已知点,直线上有两点EF使,点P在线段的延长线上,且.

1)若,求点P的轨迹方程;

2)若在点P的轨迹上存在两点MN,设的夹角为.

①若,求证:直线过定点,并求定点坐标;

②若为锐角,求直线x轴交点横坐标的取值范围.

【答案】1;(2)①证明见解析,;②..

【解析】

先利用参数求出点轨迹方程,

1代入后可得(注意去掉原点);

2)设点的坐标为,点的坐标为,代入(1)中方程然后相减可得,写出直线方程,令

①若.由此可得,代入后得定点坐标;

②若为锐角,,可得的范围,从而出结论.

解:设点的坐标为,点的坐标为,则点的坐标为

因为点在线段的延长线上,∴,∴

所以点的坐标为,∴.

,∴,∴.

1)若,则点的轨迹方程是.

2)设点的坐标为,点的坐标为

,∴

∴直线的方程是

,得.……………………1

①若,∴,∴.

,∴

代入(1)式得,所以直线过定点,该定点坐标是.

②若为锐角,∴,∴

,∴

代入(1)式得.

直线轴交点横坐标的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的图象经过点,且在点处的切线方程为.

(1)求函数的解析式;

(2)求函数的单调区间

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为且椭圆上存在一点,满足.

(1)求椭圆的标准方程;

(2)已知分别是椭圆的左、右顶点,过的直线交椭圆两点,记直线的交点为,是否存在一条定直线,使点恒在直线上?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着经济的发展,个人收入的提高,自2019年1月1日起,个人所得税起征点和税率的调整.调整如下:纳税人的工资、薪金所得,以每月全部收入额减除5000元后的余额为应纳税所得额.依照个人所得税税率表,调整前后的计算方法如下表:

个人所得税税率表(调整前)

个人所得税税率表(调整后)

免征额3500元

免征额5000元

级数

全月应纳税所得额

税率(%)

级数

全月应纳税所得额

税率(%)

1

不超过1500元部分

3

1

不超过3000元部分

3

2

超过1500元至4500元的部分

10

2

超过3000元至12000元的部分

10

3

超过4500元至9000元的部分

20

3

超过12000元至25000元的部分

20

...

...

...

...

...

...

(1)假如小红某月的工资、薪金等所得税前收入总和不高于8000元,记表示总收入,表示应纳的税,试写出调整前后关于的函数表达式;

(2)某税务部门在小红所在公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表

收入(元)

人数

30

40

10

8

7

5

先从收入在的人群中按分层抽样抽取7人,再从中选4人作为新纳税法知识宣讲员,用表示抽到作为宣讲员的收入在元的人数,表示抽到作为宣讲员的收入在元的人数,随机变量,求的分布列与数学期望

小红该月的工资、薪金等税前收入为7500元时,请你帮小红算一下调整后小红的实际收入比调整前增加了多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数某相邻两支图象与坐标轴分别变于点,则方程所有解的和为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:

单价(元)

8

8.2

8.4

8.6

8.8

9

销量(件)

90

84

83

80

75

68

1)若回归直线方程,其中;试预测当单价为10元时的销量;

2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是5/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:

甲说:“是作品获得一等奖”;

乙说:“作品获得一等奖”;

丙说:“两项作品未获得一等奖”;

丁说:“是作品获得一等奖”.

若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点

(1)求的方程;

(2)是否存在直线相交于两点,且满足:①为坐标原点)的斜率之和为2;②直线与圆相切,若存在,求出的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示在四棱锥平面平面底面是正方形 .

(Ⅰ)证明:平面平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

同步练习册答案