精英家教网 > 高中数学 > 题目详情
动圆过点(0,1)且与直线y=-1相切,则动圆圆心的轨迹方程为(    )

A.y=0              B.x2+y2=1             C.x2=4y             D.y2=4x

答案:C  轨迹是以(0,1)为焦点,y=-1为准线的抛物线x2=4y.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•聊城一模)已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,其左、右焦点分别为F1、F2,点P是坐标平面内一点,且|OP|=
7
2
PF1
PF2
=
3
4
(O为坐标原点).
(1)求椭圆C的方程;
(2)过点S(0,-
1
3
)
且斜率为k的动直线l交椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出M的坐标和△MAB面积的最大值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•茂名一模)已知椭圆C1
x2
a2
+
y2
b2
=1   (a>b>0)
过点A(0,
2
)
且它的离心率为
3
3

(1)求椭圆C1的方程;
(2)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;
(3)已知动直线l过点Q(4,0),交轨迹C2于R、S两点.是否存在垂直于x轴的直线m被以RQ为直径的圆O1所截得的弦长恒为定值?如果存在,求出m的方程;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动圆过定点Q(1,0),且与定直线x=-1相切.
(1)求此动圆圆心P的轨迹C的方程;
(2)若过点M(4,0)的直线l与曲线C分别相交于A,B两点,若2
AM
=
MB
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年鄂尔多斯市一模理)圆心在抛物线上的动圆过点(0,1),且与定直线l相切,则直线l的方程为(    )

         A.                       B.                   C.               D.

查看答案和解析>>

同步练习册答案