精英家教网 > 高中数学 > 题目详情

【题目】已知直线l3x+4y+m=0,圆Cx2+y24x+2=0,则圆C的半径r=_____;若在圆C上存在两点AB,在直线l上存在一点P,使得∠APB=90°,则实数m的取值范围是____

【答案】

【解析】

按照直线与圆有无交点分两类讨论,有交点时,显然成立,无交点时,转化为过作圆的两条切线的夹角大于等于90°,进一步转化为的最小值小于等于2,转化为圆心到直线的距离小于等于2,据此可得答案.

由圆,得,所以圆的半径.

①当直线l3x+4y+m=0与圆Cx2+y24x+2=0有交点时,显然满足题意,

此时,解得

②当直线l3x+4y+m=0与圆Cx2+y24x+2=0无交点时,

“在圆C上存在两点AB,在直线l上存在一点P,使得∠APB=90°”等价于“直线上存在点,过作圆的两条切线的夹角大于等于90°”,

设两个切点为,则,所以

所以,所以

根据题意可得直线上存在点,使得,等价于

的最小值为圆心到直线的距离,

所以,解得.又

所以

由①②可得实数m的取值范围是.

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆Cab0)的焦距为2,且过点.

1)求椭圆C的方程;

2)已知△BMN是椭圆C的内接三角形,若坐标原点O为△BMN的重心,求点O到直线MN距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】千百年来,人们一直在通过不同的方式传递信息.在古代,烽火狼烟、飞鸽传书、快马驿站等通信方式被人们广泛传知;第二次工业革命后,科技的进步带动了电讯事业的发展,电报电话的发明让通信领域发生了翻天覆地的变化;之后,计算机和互联网的出现则.使得千里眼”“顺风耳变为现实……此时此刻,5G的到来即将给人们的生活带来颠覆性的变革,“5G领先一方面是源于我国项层设计的宏观布局,另一方面则来自于政府高度重视、企业积极抢滩、企业层面的科技创新能力和先发优势.某科技创新公司基于领先技术的支持,丰富的移动互联网应用等明显优势,随着技术的不断完善,该公司的5G经济收入在短期内逐月攀升,业内预测,该创新公司在第1个月至第7个月的5G经济收入y(单位:百万元)关于月份x的数据如下表:

时间(月份)

1

2

3

4

5

6

7

收入(百万元)

6

11

21

34

66

101

196

根据以上数据绘制散点图:

1)为了更充分运用大数据、人工智能、5G等技术,公司需要派出员工实地考察检测产品性能和使用状况,公司领导要从报名的五名科技人员ABCDE中随机抽取3个人前往,则AB同时被抽到的概率为多少?

2)根据散点图判断,abcd均为大于零的常数)哪一个适宜作为5G经济收入y关于月份x的回归方程类型?(给出判断即可,不必说明理由)并根据你判断结果及表中的数据,求出y关于x的回归方程;

3)请你预测该公司8月份的5G经济收入.

参考数据:

462

10.78

2711

50.12

2.82

3.47

其中设

参考公式:

对于一组具有线性相关系的数据23n),其回归直线的斜率和截距的最小二乘估计公式分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】音乐是用声音来表达人的思想感情的一种艺术,明代的律学家朱载堉创建了十二平均律,并把十二平均律计算得十分精确,与当今的十二平均律完全相同,其方法是将一个八度音程(即相邻的两个具有相同名称的音之间,如图中88键标准钢琴键盘的一部分中,cc1便是一个八度音程)均分为十二等分的音律,如果用正式的音乐术语称呼原来的7个音符,分别是cdefgab,则多出来的5个音符为c#(读做“升c”),d#f#g#a#12音阶为:cc#dd#eff#gg#aa#b,相邻音阶的频率之比为1.如图,则键盘cd的频率之比为1,键盘ef的频率之比为1,键盘cc1的频率之比为12,由此可知,图中的键盘b1f2的频率之比为(

A.B.1C.1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),直线经过点且倾斜角为,以原点为极点,轴的正半轴为极轴建立极坐标系.

1)求曲线的极坐标方程;

2)过原点作直线的垂线,垂足为交曲线于另一点,当变化时,求的面积的最大值及相应的的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的导函数.

1)证明:当x0时,f(x)0

2)证明:()上有且只有3个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,D的中点.

1)证明:平面

2)若是边长为2的正三角形,且,平面平面.求平面与侧面所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在郊野公园的景观河的两岸,是夹角为120°的两条岸边步道(长度均超过千米),为方便市民观光游览,现准备在河道拐角处的另一侧建造一个观景台,在两条步道上分别设立游客上下点,从到观景台建造两条游船观光线路,测得千米.

1)求游客上下点间的距离;

2)若,设,求两条观光线路之和关于的表达式,并求其最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线)上的两个动点,焦点为F.线段AB的中点为,且AB两点到抛物线的焦点F的距离之和为8.


1)求抛物线的标准方程;

2)若线段AB的垂直平分线与x轴交于点C,求面积的最大值.

查看答案和解析>>

同步练习册答案