精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,

已知圆和圆.

1)若直线过点,且被圆截得的弦长为

求直线的方程;(2)设P为平面上的点,满足:

存在过点P的无穷多对互相垂直的直线

它们分别与圆和圆相交,且直线被圆

截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点P的坐标。

【答案】(1)(2)P在以C1C2的中垂线上,且与C1C2等腰直角三角形,利用几何关系计算可得点P坐标为

【解析】

(1)设直线l的方程为yk(x4),即kxy4k0.由垂径定理,得圆心C1到直线l的距离d1,结合点到直线距离公式,得1,化简得24k27k0,解得k0k=-.

所求直线l的方程为y0y=-(x4),即y07x24y280.

(2)设点P坐标为(mn),直线l1l2的方程分别为ynk(xm)yn=-(xm),即kxynkm0,-xynm0.

因为直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,两圆半径相等.由垂径定理,得圆心C1到直线l1与圆心C2到直线l2的距离相等.故有

化简得(2mn)kmn3(mn8)kmn5.

因为关于k的方程有无穷多解,所以有

解得点P坐标为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an},{bn}满足 ,其中n∈N+ . (I)求证:数列{bn}是等差数列,并求出数列{an}的通项公式;
(II)设 ,求数列{cncn+2}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在底面为正方形的四棱锥S﹣ABCD中,SA=SB=SC=SD,异面直线AD与SC所成的角为60°,AB=2.则四棱锥S﹣ABCD的外接球的表面积为(
A.6π
B.8π
C.12π
D.16π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三课外兴趣小组为了解高三同学高考结束后是否打算观看2018年足球世界杯比赛的情况,从全校高三年级1500名男生、1000名女生中按分层抽样的方式抽取125名学生进行问卷调查,情况如下表:

打算观看

不打算观看

女生

20

b

男生

c

25

1)求出表中数据bc;

2)判断是否有99%的把握认为观看2018年足球世界杯比赛与性别有关;

3)为了计算10人中选出9人参加比赛的情况有多少种,我们可以发现它与10人中选出1人不参加比赛的情况有多少种是一致的.现有问题:在打算观看2018年足球世界杯比赛的同学中有5名男生、2名女生来自高三(5)班,从中推选5人接受校园电视台采访,请根据上述方法,求被推选出的5人中恰有四名男生、一名女生的概率.

P(K2≥k0)

0.10

0.05

0.025

0.01

0.005

K0

2.706

3.841

5.024

6.635

7.879

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=lnx+ +ax(a∈R),g(x)=ex+
(1)讨论f(x)的极值点的个数;
(2)若对于x>0,总有f(x)≤g(x).(i)求实数a的取值范围;(ii)求证:对于x>0,不等式ex+x2﹣(e+1)x+ >2成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2|x+1|+|2x﹣a|(x∈R).
(1)当a>﹣2时,函数f(x)的最小值为4,求实数a的值;
(2)若对于任意,x∈[﹣1,4],不等式f(x)≥3x恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在钝角△ABC中,角A,B,C所对的边分别为a,b,c且b=atanB. (Ⅰ)求A﹣B的值;
(Ⅱ)求cos2B﹣sinA的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)若函数在R上单调递增,求实数的取值范围;

(2)若,证明:当时,

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱柱中, 平面 分别是棱的中点.

(1)求证: 平面

(2)求证: 平面.

查看答案和解析>>

同步练习册答案