分析 (Ⅰ)利用古典概型的概率求解方法求出概率即可;
(Ⅱ)求出随机变量X的所有可能取值,求出相应的概率,得到X的分布列,然后求解数学期望.
解答 解:( I)由题意知,7名队员中分为两部分,3人为女棋手,4人为男棋手,
设事件A=“恰有1位女棋手”,则$P(A)=\frac{C_3^1C_4^3}{C_7^4}=\frac{12}{35}$,…(4分)
所以参加第一阶段的比赛的队员中,恰有1位女棋手的概率为$\frac{12}{35}$.…(5分)
( II)随机变量X的所有可能取值为0,2,4.其中$P({X=0})=\frac{C_3^2C_4^2}{C_7^4}=\frac{18}{35}$,$P({X=2})=\frac{C_3^1C_4^3+C_3^3C_4^1}{C_7^4}=\frac{16}{35}$,$P({X=4})=\frac{C_3^0C_4^4}{C_7^4}=\frac{1}{35}$.…(9分)
所以,随机变量X分布列为
X | 0 | 2 | 4 |
P | $\frac{18}{35}$ | $\frac{16}{35}$ | $\frac{1}{35}$ |
点评 本题考查离散型随机变量的分布列,期望的求法,考查古典概型概率的求法,考查分析问题解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | f(x)=x,g(x)=${(\sqrt{x}\;)^2}$ | B. | f(x)=x+1,g(x)=$\frac{{{x^2}-1}}{x-1}$ | ||
C. | f(x)=|x|,g(x)=$\sqrt{{x}^{2}}$ | D. | f(x)=log22x,g(x)=2log2x |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {0,1,16} | B. | {0,1} | C. | {1,16} | D. | {0,1,4,16} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,1) | B. | $({\frac{3}{4},+∞})$ | C. | (0,2) | D. | (0,1) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com