精英家教网 > 高中数学 > 题目详情
7.函数f(x)=sinπx+cosπx+|sinπx-cosπx|对任意x∈R有f(x1)≤f(x)≤f(x2)成立,则|x2-x1|的最小值为$\frac{3}{4}$.

分析 先将函数写出分段函数,结合三角函数的图象,再确定|x2-x1|的最小值为相邻最小值与最大值处横坐标差的绝对值,由此可得结论.

解答 解:由题意可得,f(x)=$\left\{\begin{array}{l}{2sinπx,}&{sinπx≥cosπx}\\{2cosπx,}&{sinπx<cosπx}\end{array}\right.$,
若f(x1)≤f(x)≤f(x2)恒成立,
则f(x1)为函数的最小值,f(x2)为函数的最大值.
|x2-x1|的最小值为相邻最小值与最大值处横坐标差的绝对值.
由于x=$\frac{1}{2}$ 时,函数取得最大值2,x=$\frac{5}{4}$ 时,sinπx=cosπx=-$\frac{\sqrt{2}}{2}$,函数取得最小值,
∴|x2-x1|的最小值为$\frac{5}{4}$-$\frac{1}{2}$=$\frac{3}{4}$,
故答案为:$\frac{3}{4}$.

点评 本题考查三角函数的性质,确定|x2-x1|的最小值为相邻最小值与最大值处横坐标差的绝对值是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A,B,C所对的边长分别为a,b,c.已知sinA+sinC=psinB(p∈R),且b2=3ac.
(Ⅰ)当$p=\frac{4}{3},b=1$时,求a,c的值;
(Ⅱ)若角B为钝角,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.一个几何体的三视图如图所示,其中正视图是正三角形,则几何体的外接球的表面积为$\frac{64π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线l:$\left\{{\begin{array}{l}{x=-1-\frac{{\sqrt{2}}}{2}t}\\{y=2+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$与抛物线y=x2交于A,B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若曲线f(x)=3x+ax3在点(1,a+3)处的切线与直线y=6x平行,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图是集合P={(x,y)|(x-cosθ)2+(y-sinθ)2=4,0≤θ≤π}中的点在平面上运动时留下的阴影,中间形如“水滴”部分的平面面积为(  )
A.$\frac{11}{6}π-\sqrt{3}$B.$\frac{7}{3}π-\sqrt{3}$C.$π+\sqrt{3}$D.π+2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.一对夫妇为了5年后能购买一辆汽车,准备每年到银行去存一笔钱.假设银行储蓄利率为5%,按复利计算,为了使5年后本利和有10万元,问他们每年约需存多少钱?(1.055≈1.27628,精确到1元).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知幂函数y=x3m-7(m∈N)的图象关于y轴对称,且与x轴,y轴均无交点,则m=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图是一个几何体的三视图,正视图和侧视图均为矩形,俯视图中曲线部分为半圆,尺寸如图,则该几何体的体积为10π+40.

查看答案和解析>>

同步练习册答案