精英家教网 > 高中数学 > 题目详情

【题目】,函数,函数.

(1)当时,求函数的零点个数;

(2)若函数与函数的图象分别位于直线的两侧,求的取值集合

(3)对于,求的最小值.

【答案】(1)见解析;(2);(3)

【解析】

(1)当n=1时,f(x)=,f′(x)=(x>0),确定函数的单调性,即可求函数y=f(x)的零点个数;

(2)若函数y=f(x)与函数y=g(x)的图象分别位于直线y=1的两侧,n∈N*,函数f(x)有最大值f()=1,即f(x)在直线l:y=1的上方,可得g(n)=1求n的取值集合A;

(3)x1,x2∈(0,+∞),|f(x1)﹣g(x2)|的最小值等价于,发布网球场相应的函数值,比较大小,即可求|f(x1)﹣g(x2)|的最小值.

(1)当时,.

;由.

所以函数上单调递增,在上单调递减,

因为

所以函数上存在一个零点;

时,恒成立,

所以函数上不存在零点.

综上得函数上存在唯一一个零点.

(2)由函数求导,得

,得;由,得

所以函数上单调递增,在上单调递减,

则当时,函数有最大值

由函数求导,得

;由.

所以函数上单调递减,在上单调递增,

则当时,函数有最小值

因为,函数的最大值

即函数在直线的下方,

故函数在直线的上方,

所以,解得.

所以的取值集合为.

(3)对的最小值等价于

时,

时,

因为

所以的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于定义在上的函数,若存在距离为的两条直线,使得对任意的都有,则称函数有一个宽为的通道.给出下列函数:①;②;③;④.其中在区间上通道宽度为1的函数由__________ (写出所有正确的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数zbi(bR)是纯虚数,i是虚数单位.

(1)求复数z

(2)若复数(mz)2所表示的点在第二象限,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】( 本小题满分14)

如图,在三棱锥PABC中,PC底面ABCABBCDE分别是ABPB的中点.

(1)求证:DE平面PAC

(2)求证:ABPB

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为普及学生安全逃生知识与安全防护能力,某学校高一年级举办了安全知识与安全逃生能力竞赛,该竞赛分为预赛和决赛两个阶段,预赛为笔试,决赛为技能比赛,现将所有参赛选手参加笔试的成绩(得分均为整数,满分为分)进行统计,制成如下频率分布表.

分数(分数段)

频数(人数)

频率

合计

(1)求表中的值;

(2)按规定,预赛成绩不低于分的选手参加决赛.已知高一(2)班有甲、乙两名同学取得决赛资格,记高一(2)班在决赛中进入前三名的人数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥EABCD中,底面ABCD是边长为2的正方形,且DE,平面ABCD⊥平面ADE,∠ADE30°

(1)求证:AE⊥平面CDE

(2)求AB与平面BCE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若,求函数的单调区间;

(2)若,则当时,函数的图象是否总在直线上方?请写出判断过程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABCa=7,b=8,cosB= –

A

AC边上的高

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂修建一个长方体无盖蓄水池,其容积为4 800立方米,深度为3米.池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底长方形长为x米.

1)求底面积,并用含x的表达式表示池壁面积;

2)怎样设计水池能使总造价最低?最低造价是多少?

查看答案和解析>>

同步练习册答案