【题目】某商场经营一批进价为30元/件的商品,在市场试销中发现,此商品的销售单价x(单位:元)与日销售量y(单位:件)之间有如下表所示的关系.
x | … | 30 | 40 | 45 | 50 | … |
y | … | 60 | 30 | 15 | 0 | … |
(1)根据表中提供的数据描出实数对的对应点,根据画出的点猜想y与x之间的函数关系,并写出一个函数解析式;
(2)设经营此商品的日销售利润为P(单位:元),根据上述关系,写出P关于x的函数解析式,并求销售单价为多少元时,才能获得最大日销售利润?
科目:高中数学 来源: 题型:
【题目】对于各数不相等的正整数组(i1, i2, …, in),(n是不小于2的正整数),如果在p>q时有,则称ip和iq是该数组的一个“好序”,一个数组中“好序”的个数称为此数组的“好序数”,例如,数组(1, 3, 4, 2)中有好序“1, 3”,“1, 4”,“1, 2”,“3, 4”,其“好序数”等于4. 若各数互不相等的正整数组(a1, a2, a3, a4, a5, a6, a7)的“好序数”等于3,则(a7,a6, a5, a4, a3, a2, a1)的“好序数”是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的定义域为,对于任意实数,,都有,当时,.
(1)求的值;
(2)证明:当时,.
(3)证明:在上单调递减.
(4)若对任意恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数对任意的实数m,n都有,且当时,.
(1)求;
(2)求证:在R上为增函数;
(3)若,且关于x的不等式对任意的恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一机器可以按各种不同的速度运转,其生产物件有一些会有缺点,每小时生产有缺点物件的多少随机器运转速度而变化,用x表示转速(单位:转/秒),用y表示每小时生产的有缺点物件个数,现观测得到的4组观测值为.
(1)假定y与x之间有线性相关关系,求y对x的回归直线方程.
(2)若实际生产中所容许的每小时最大有缺点物件数为10,则机器的速度不得超过多少转/秒?(精确到1转/秒)
回归直线的斜率和截距的最小二乘估计公式分别为:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=,g(x)=(a>0,且a≠1).
(1)求函数φ(x)=f(x)+g(x)的定义域;
(2)试确定不等式f(x)≤g(x)中x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点M(﹣1,0),N(1,0),曲线E上任意一点到点M的距离均是到点N的距离的倍.
(1)求曲线E的方程;
(2)已知m≠0,设直线:x﹣my﹣1=0交曲线E于A,C两点,直线:mx+y﹣m=0交曲线E于B,D两点,若CD的斜率为﹣1时,求直线CD的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线:,:,则下面结论正确的是( )
A. 把上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线
B. 把上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线
C. 把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线
D. 把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com